示例#1
0
    def perturb(self, X_nat, y):
        """
        Given examples (X_nat, y), returns adversarial
        examples within epsilon of X_nat in l_infinity norm.
        """
        if self.rand:
            X = X_nat + np.random.uniform(-self.epsilon, self.epsilon,
                                          X_nat.shape).astype('float32')
        else:
            X = np.copy(X_nat)

        for i in range(self.k):
            X_var = base.to_var(torch.from_numpy(X), requires_grad=True)
            y_var = base.to_var(torch.LongTensor(y))

            scores = self.model(X_var)
            loss = self.loss_fn(scores, y_var)
            loss.backward()
            grad = X_var.grad.data.cpu().numpy()

            X += self.a * np.sign(grad)

            X = np.clip(X, X_nat - self.epsilon, X_nat + self.epsilon)
            X = np.clip(X, 0, 1)  # ensure valid pixel range

        X=torch.from_numpy(X)
        return X
示例#2
0
    def perturb(self, X_nat, y, epsilons=None):
        """
        Given examples (X_nat, y), returns their adversarial
        counterparts with an attack length of epsilon.
        """
        # Providing epsilons in batch
        if epsilons is not None:
            self.epsilon = epsilons

        X = np.copy(X_nat)

        X_var = base.to_var(torch.from_numpy(X), requires_grad=True)
        y_var = base.to_var(torch.LongTensor(y))

        scores = self.model(X_var)
        loss = self.loss_fn(scores, y_var)
        loss.backward()
        grad_sign = X_var.grad.data.cpu().sign().numpy()

        X += self.epsilon * grad_sign
        X = np.clip(X, 0, 1)

        X = torch.from_numpy(X)
        return X
示例#3
0
'''
训练模型
'''
net.train()  # 训练模式
criterion = nn.CrossEntropyLoss()  # 损失函数
optimizer = torch.optim.RMSprop(net.parameters(), lr=param['learning_rate'],
                                weight_decay=param['weight_decay'])  # 优化器,具体怎么优化,学习率、正则化等等

'''对抗样本攻击'''
#adversary = Adversary.FGSM.FGSM(net, param['epsilon'])  # 攻击方法
adversary = Adversary.LinfPGD.LinfPGDAttack(net, param['epsilon'])

for epoch in range(param['num_epochs']):
    print('Starting epoch %d / %d' % (epoch + 1, param['num_epochs']))
    for t, (x, y) in enumerate(loader_train):
        x_var, y_var = base.to_var(x), base.to_var(y.long())  # 转换格式
        X_adv = adversary.perturb(x.numpy(), y)  # 加入扰动,生成对抗样本

        loss = (criterion(net(x_var), y_var) + criterion(net(X_adv.cuda()), y_var))/2  # 计算损失
        optimizer.zero_grad()  # 把上一轮的梯度清零
        loss.backward()  # 反向传播求导
        optimizer.step()  # 优化参数

        if (t + 1) % 10 == 0:  # 每训练10批数据看一下loss
            print('t = %d, loss = %.8f' % (t + 1, loss.item()))
        if (t + 1) % 100 == 0:
            num_correct, num_samples, acc = Optimizer.test(net, loader_test)
            print('[train] t = %d, right predict:(%d/%d) ,pre test_acc=%.4f%%' % (t + 1, num_correct, num_samples, acc))
            torch.save(net.state_dict(), modelpath)  # 保存模型到文件