示例#1
0
    def _integrate_backward(self, q, y_of_t, normA, normB, i0, k_ab4, dt_ab4):
        """
Use AB4 to integrate backward in time, starting at index i0.
k_ab4 is [dydt(i0 + 3), dydt(i0 + 2), dydt(i0 + 1)]
dt_ab4 is [t(i0 + 3) - t(i0 + 2), t(i0 + 2) - t(i0 + 1), t(i0 + 1) - t(i0)]
        """

        if i0 > len(self.t) - 7:
            raise Exception("i0 must be <= len(self.t) - 7")

        # Setup AB4
        k1, k2, k3 = k_ab4
        dt1, dt2, dt3 = dt_ab4

        # Setup dt array, removing the half steps
        dt_array = np.append(2 * self.diff_t[:6:2], self.diff_t[6:])
        for i_output in range(i0)[::-1]:
            node_index = i_output + 4
            if i_output < 2:
                node_index = 2 + 2*i_output
            dt4 = dt_array[i_output]
            k4 = self.get_time_deriv_from_index(node_index, q, y_of_t[i_output+1])
            ynext = y_of_t[i_output+1] - _utils.ab4_dy(k1, k2, k3, k4, dt1, dt2, dt3, dt4)
            y_of_t[i_output] = _utils.normalize_y(ynext, normA, normB)

            # Setup for next iteration
            k1, k2, k3 = k2, k3, k4
            dt1, dt2, dt3 = dt2, dt3, dt4

        return y_of_t
示例#2
0
    def _integrate_forward(self, q, y_of_t, normA, normB, i0, k_ab4, dt_ab4):
        """
Use AB4 to integrate forward in time, starting at index i0.
i0 refers to the index of y_of_t, which should be the latest index at which
we already have the solution; typically i0=3 after three steps of RK4.
k_ab4 is [dydt(i0 - 3), dydt(i0 - 2), dydt(i0 - 1)]
dt_ab4 is [t(i0 - 2) - t(i0 - 3), t(i0 - 1) - t(i0 - 2), t(i0) - t(i0 - 1)]
where for both k_ab4 and dt_ab4 the indices correspond to y_of_t nodes and skip
fractional nodes.
        """
        if i0 < 3:
            raise Exception("i0 must be at least 3!")

        # Setup AB4
        k1, k2, k3 = k_ab4
        dt1, dt2, dt3 = dt_ab4

        # Run AB4
        for i, dt4 in enumerate(self.diff_t[i0+3:]): #i0+3 due to 3 half time steps
            i_output = i0+i
            k4 = self.get_time_deriv_from_index(i_output+3, q, y_of_t[i_output])
            ynext = y_of_t[i_output] + _utils.ab4_dy(k1, k2, k3, k4, dt1, dt2, dt3, dt4)
            y_of_t[i_output+1] = _utils.normalize_y(ynext, normA, normB)

            # Setup for next iteration
            k1, k2, k3 = k2, k3, k4
            dt1, dt2, dt3 = dt2, dt3, dt4

        return y_of_t
示例#3
0
    def _initialize(self, q, chiA0, chiB0, init_quat, init_orbphase, t_ref, normA, normB):
        """
Initializes an array of data with the initial conditions.
If t_ref does not correspond to a time node, takes one small time step to
the nearest time node.
        """
        # data is [q0, qx, qy, qz, orbphase, chiAx, chiAy, chiAz, chiBx, chiBy, chiBz]
        # We do three steps of RK4, so we have 3 fewer timesteps in the output
        # compared to self.t
        data = np.zeros((self.L-3, 11))

        y0 = np.append(np.array([1., 0., 0., 0., init_orbphase]), np.append(chiA0, chiB0))
        if init_quat is not None:
            y0[:4] = init_quat

        if t_ref is None:
            data[0, :] = y0
            i0 = 0
        else:
            # Step to the closest time node using forward Euler
            times = np.append(self.t[:6:2], self.t[6:])
            i0 = np.argmin(abs(times - t_ref))
            t0 = times[i0]
            dydt0 = self.get_time_deriv(t_ref, q, y0)
            y_node = y0 + (t0 - t_ref) * dydt0
            y_node = _utils.normalize_y(y_node, normA, normB)
            data[i0, :] = y_node

        return data, i0
示例#4
0
    def _initial_RK4(self, q, y_of_t, normA, normB):
        """This is used to initialize the AB4 system when t_ref=t_0 (default)"""


        # Three steps of RK4
        k_ab4 = []
        dt_ab4 = []
        for i, dt in enumerate(self.diff_t[:6:2]):
            k1 = self.get_time_deriv_from_index(2*i, q, y_of_t[i])
            k_ab4.append(k1)
            dt_ab4.append(2*dt)
            k2 = self.get_time_deriv_from_index(2*i+1, q, y_of_t[i] + dt*k1)
            k3 = self.get_time_deriv_from_index(2*i+1, q, y_of_t[i] + dt*k2)
            k4 = self.get_time_deriv_from_index(2*i+2, q, y_of_t[i] + 2*dt*k3)
            ynext = y_of_t[i] + (dt/3.)*(k1 + 2*k2 + 2*k3 + k4)
            y_of_t[i+1] = _utils.normalize_y(ynext, normA, normB)

        return k_ab4, dt_ab4, y_of_t
示例#5
0
    def _one_forward_RK4_step(self, q, y_of_t, normA, normB, i0):
        """Steps forward one step using RK4"""

        # i0 is on the y_of_t grid, which has 3 fewer samples than the self.t grid
        i_t = i0 + 3
        if i0 < 3:
            i_t = i0*2

        t1 = self.t[i_t]
        t2 = self.t[i_t + 1]
        if i0 < 3:
            t2 = self.t[i_t + 2]
        half_dt = 0.5*(t2 - t1)

        k1 = self.get_time_deriv(t1, q, y_of_t[i0])
        k2 = self.get_time_deriv(t1 + half_dt, q, y_of_t[i0] + half_dt*k1)
        k3 = self.get_time_deriv(t1 + half_dt, q, y_of_t[i0] + half_dt*k2)
        k4 = self.get_time_deriv(t2, q, y_of_t[i0] + 2*half_dt*k3)
        ynext = y_of_t[i0] + (half_dt/3.)*(k1 + 2*k2 + 2*k3 + k4)
        y_of_t[i0+1] = _utils.normalize_y(ynext, normA, normB)
        return y_of_t, k1