示例#1
0
 def propose(self):
     tau = 1./(self.adaptive_scale_factor * self.proposal_sd)**2
     time = pymc.rnormal(self.stochastic.value.time, tau)
     n = pymc.rnormal(len(self.stochastic.value), tau)
     if n <= 0:
         n = 0
     times = [rand.random() for _ in range(n)]
     total = float(sum(times))
     times = [item*time/total for item in times]
     events = [_Survival._event(time=item, censored=False) for item in times]
     events = numpy.array(events)
     self.stochastic.value = _Survival._multiEvent(events)
示例#2
0
 def propose(self):
     tau = 1./(self.adaptive_scale_factor * self.proposal_sd)**2
     time = pymc.rnormal(self.stochastic.value.time, tau)
     censored = rand.random() > 0.5
     self.stochastic.value = _Survival._event(time, censored)