def run_experiments( train_hilo: str, test_hilo: str, train_length: int, static: bool, ignore_vars: Optional[List[str]] = None, run_regression: bool = True, all_models: bool = False, ): # run baseline model print("\n\nBASELINE MODEL:") persistence() print("\n\n") # RUN EXPERIMENTS if run_regression: regression(ignore_vars=ignore_vars, include_static=static) if static: # 'embeddings' or 'features' try: earnn(pretrained=False, ignore_vars=ignore_vars, static="embeddings") except RuntimeError: print(f"\n{'*'*10}\n FAILED: EALSTM \n{'*'*10}\n") if all_models: # run all other models ? try: linear_nn(ignore_vars=ignore_vars, static="embeddings") except RuntimeError: print(f"\n{'*'*10}\n FAILED: LinearNN \n{'*'*10}\n") try: rnn(ignore_vars=ignore_vars, static="embeddings") except RuntimeError: print(f"\n{'*'*10}\n FAILED: RNN \n{'*'*10}\n") try: earnn(pretrained=False, ignore_vars=ignore_vars, static=None) except RuntimeError: print(f"\n{'*'*10}\n FAILED: EALSTM \n{'*'*10}\n") else: # NO STATIC data try: rnn(ignore_vars=ignore_vars, static=None) except RuntimeError: print(f"\n{'*'*10}\n FAILED: RNN \n{'*'*10}\n") if all_models: # run all other models ? try: linear_nn(ignore_vars=ignore_vars, static=None) except RuntimeError: print(f"\n{'*'*10}\n FAILED: LinearNN \n{'*'*10}\n") # RENAME DIRECTORY data_dir = get_data_path() rename_experiment_dir(data_dir, train_hilo=train_hilo, test_hilo=test_hilo, train_length=train_length) print( f"\n**Experiment finished**\n", "train_length: " + str(train_length), "test_hilo: " + test_hilo, "train_hilo: " + train_hilo, "\ntrain_years:\n", train_years, "\n", "test_years:\n", test_years, )
def run_all_models_as_experiments( vars_to_include: List[str], ignore_vars: List[str], static: bool, run_regression: bool = True, ): print(f"Experiment {vars_to_include} Static: {static}") # RUN EXPERIMENTS if run_regression: regression(ignore_vars=ignore_vars, include_static=static) if static: # 'embeddings' or 'features' try: linear_nn(ignore_vars=ignore_vars, static="embeddings") except KeyboardInterrupt: raise except Exception as e: logging.debug( f"\n{'*'*10}\n FAILED: LinearNN for vars={vars_to_include} static={static}\n{'*'*10}\n" ) logging.debug(e) try: rnn(ignore_vars=ignore_vars, static="embeddings") except KeyboardInterrupt: raise except Exception as e: logging.debug( f"\n{'*'*10}\n FAILED: RNN for vars={vars_to_include} static={static}\n{'*'*10}\n" ) logging.debug(e) try: earnn(pretrained=False, ignore_vars=ignore_vars, static="embeddings") except KeyboardInterrupt: raise except Exception as e: logging.debug( f"\n{'*'*10}\n FAILED: EALSTM for vars={vars_to_include} static={static}\n{'*'*10}\n" ) logging.debug(e) else: try: linear_nn(ignore_vars=ignore_vars, static=None) except KeyboardInterrupt: raise except Exception as e: logging.debug( f"\n{'*'*10}\n FAILED: LinearNN for vars={vars_to_include} static={static}\n{'*'*10}\n" ) logging.debug(e) try: rnn(ignore_vars=ignore_vars, static=None) except KeyboardInterrupt: raise except Exception as e: logging.debug( f"\n{'*'*10}\n FAILED: RNN for vars={vars_to_include} static={static}\n{'*'*10}\n" ) logging.debug(e) try: # NO NEED to run the EALSTM without static data because # just equivalent to the RNN earnn(pretrained=False, ignore_vars=ignore_vars, static=None) except KeyboardInterrupt: raise except Exception as e: logging.debug( f"\n{'*'*10}\n FAILED: EALSTM for vars={vars_to_include} static={static}\n{'*'*10}\n" ) logging.debug(e) # RENAME DIRECTORY data_dir = get_data_path().absolute() rename_model_experiment_file(data_dir, vars_to_include, static) print(f"Experiment {vars_to_include} finished")
regression( ignore_vars=always_ignore_vars, experiment="one_month_forecast", include_pred_month=True, surrounding_pixels=None, explain=False, ) # # gbdt(ignore_vars=always_ignore_vars) linear_nn( ignore_vars=always_ignore_vars, experiment="one_month_forecast", include_pred_month=True, surrounding_pixels=None, explain=False, num_epochs=num_epochs, early_stopping=early_stopping, layer_sizes=[hidden_size], include_latlons=True, include_yearly_aggs=False, clear_nans=True, ) # ------------- # LSTM # ------------- rnn( experiment="one_month_forecast", include_pred_month=True, surrounding_pixels=None, explain=False,