示例#1
0
文件: bct.py 项目: aestrivex/pyconto
def clustering_coef_bu(*args):
  return _bct.clustering_coef_bu(*args)
示例#2
0
def clustering_coef_bu(*args):
    return _bct.clustering_coef_bu(*args)
示例#3
0
文件: bct.py 项目: aestrivex/pyconto
def clustering_coef_bu(*args):
  """clustering_coef_bu(gsl_matrix G) -> gsl_vector"""
  return _bct.clustering_coef_bu(*args)
示例#4
0
def clustering_coef(cmatrix, edgetype, weighted):
    """ Clustering coefficient C
    
    For an individual node, the clustering coefficient is defined as the
    fraction of the existing number, to the total possible number of
    neighbor-neighbor links.
    
    Parameters
    ----------
    
    cmatrix : connection/adjacency matrix
    
    edgetype : {'directed','undirected'} 

    weighted : {False, True}
    
    Returns
    -------
    
    edgetype == 'undirected':
    
        weighted == True:
            C : clustering coefficient C for weighted undirected graph W.
            
            Reference: Onnela et al. 2005, Phys Rev E 71:065103
            
            Mika Rubinov, UNSW, 2007 (last modified July 2008)
        
        weighted == False:
            C : clustering coefficient C, for binary undirected graph G
            
            Reference: Watts and Strogatz, 1998, Nature 393:440-442
            
            Mika Rubinov, UNSW, 2007 (last modified September 2008)

    edgetype == 'directed':
    
        weighted == True:
            C : clustering coefficient C for weighted directed graph W.
            
            Reference: Fagiolo, 2007, Phys Rev E 76:026107
            (also see Onnela et al. 2005, Phys Rev E 71:065103);
            
            Mika Rubinov, UNSW, 2007 (last modified July 2008)

            See comments for clustering_coef_bd
            The weighted modification is as follows:
            - The numerator: adjacency matrix is replaced with weights
              matrix^1/3
            - The denominator: no changes from the binary version
            
            The above reduces to symmetric and/or binary versions of the
               clustering coefficient for respective graphs.

        weighted == False:
            C : clustering coefficient C, for binary directed graph A
            
            Reference: Fagiolo, 2007, Phys Rev E 76:026107.
            
            Mika Rubinov, UNSW, 2007 (last modified July 2008)
            
            In directed graphs, 3 nodes generate up to 8 triangles (2*2*2 edges)
            The number of existing triangles is the main diagonal of S^3/2
            The number of all (in or out) neighbour pairs is K(K-1)/2
            Each neighbour pair may generate two triangles
            "False pairs" are i<->j edge pairs (these do not generate triangles)
            The number of false pairs is the main diagonal of A^2
            Thus the maximum possible number of triangles = 
              = (2 edges)*([ALL PAIRS] - [FALSE PAIRS]) =
              = 2 * (K(K-1)/2 - diag(A^2)) = K(K-1) - 2(diag(A^2))
              
    """
    if edgetype == 'directed':
        if weighted:
            m = bct.to_gslm(cmatrix.tolist())
            str = bct.clustering_coef_wd(m)
            strnp = bct.from_gsl(str)
            bct.gsl_free(m)
            bct.gsl_free(str)
            return np.asarray(strnp)
        else:
            m = bct.to_gslm(cmatrix.tolist())
            str = bct.clustering_coef_bd(m)
            strnp = bct.from_gsl(str)
            bct.gsl_free(m)
            bct.gsl_free(str)
            return np.asarray(strnp)
    else:
        if weighted:
            m = bct.to_gslm(cmatrix.tolist())
            str = bct.clustering_coef_wu(m)
            strnp = bct.from_gsl(str)
            bct.gsl_free(m)
            bct.gsl_free(str)
            return np.asarray(strnp)
        else:
            m = bct.to_gslm(cmatrix.tolist())
            str = bct.clustering_coef_bu(m)
            strnp = bct.from_gsl(str)
            bct.gsl_free(m)
            bct.gsl_free(str)
            return np.asarray(strnp)
示例#5
0
文件: bct.py 项目: omerch/pyconto
def clustering_coef_bu(*args):
    """clustering_coef_bu(gsl_matrix G) -> gsl_vector"""
    return _bct.clustering_coef_bu(*args)
示例#6
0
def clustering_coef(cmatrix, edgetype, weighted):
    """ Clustering coefficient C
    
    For an individual node, the clustering coefficient is defined as the
    fraction of the existing number, to the total possible number of
    neighbor-neighbor links.
    
    Parameters
    ----------
    
    cmatrix : connection/adjacency matrix
    
    edgetype : {'directed','undirected'} 

    weighted : {False, True}
    
    Returns
    -------
    
    edgetype == 'undirected':
    
        weighted == True:
            C : clustering coefficient C for weighted undirected graph W.
            
            Reference: Onnela et al. 2005, Phys Rev E 71:065103
            
            Mika Rubinov, UNSW, 2007 (last modified July 2008)
        
        weighted == False:
            C : clustering coefficient C, for binary undirected graph G
            
            Reference: Watts and Strogatz, 1998, Nature 393:440-442
            
            Mika Rubinov, UNSW, 2007 (last modified September 2008)

    edgetype == 'directed':
    
        weighted == True:
            C : clustering coefficient C for weighted directed graph W.
            
            Reference: Fagiolo, 2007, Phys Rev E 76:026107
            (also see Onnela et al. 2005, Phys Rev E 71:065103);
            
            Mika Rubinov, UNSW, 2007 (last modified July 2008)

            See comments for clustering_coef_bd
            The weighted modification is as follows:
            - The numerator: adjacency matrix is replaced with weights
              matrix^1/3
            - The denominator: no changes from the binary version
            
            The above reduces to symmetric and/or binary versions of the
               clustering coefficient for respective graphs.

        weighted == False:
            C : clustering coefficient C, for binary directed graph A
            
            Reference: Fagiolo, 2007, Phys Rev E 76:026107.
            
            Mika Rubinov, UNSW, 2007 (last modified July 2008)
            
            In directed graphs, 3 nodes generate up to 8 triangles (2*2*2 edges)
            The number of existing triangles is the main diagonal of S^3/2
            The number of all (in or out) neighbour pairs is K(K-1)/2
            Each neighbour pair may generate two triangles
            "False pairs" are i<->j edge pairs (these do not generate triangles)
            The number of false pairs is the main diagonal of A^2
            Thus the maximum possible number of triangles = 
              = (2 edges)*([ALL PAIRS] - [FALSE PAIRS]) =
              = 2 * (K(K-1)/2 - diag(A^2)) = K(K-1) - 2(diag(A^2))
              
    """
    if edgetype == 'directed':
        if weighted:
            m = bct.to_gslm(cmatrix.tolist())
            str = bct.clustering_coef_wd(m)
            strnp = bct.from_gsl(str)
            bct.gsl_free(m)
            bct.gsl_free(str)
            return np.asarray(strnp)
        else:
            m = bct.to_gslm(cmatrix.tolist())
            str = bct.clustering_coef_bd(m)
            strnp = bct.from_gsl(str)
            bct.gsl_free(m)
            bct.gsl_free(str)
            return np.asarray(strnp)
    else:
        if weighted:
            m = bct.to_gslm(cmatrix.tolist())
            str = bct.clustering_coef_wu(m)
            strnp = bct.from_gsl(str)
            bct.gsl_free(m)
            bct.gsl_free(str)
            return np.asarray(strnp)
        else:
            m = bct.to_gslm(cmatrix.tolist())
            str = bct.clustering_coef_bu(m)
            strnp = bct.from_gsl(str)
            bct.gsl_free(m)
            bct.gsl_free(str)
            return np.asarray(strnp)