def map2alm(m,lmax=None,mmax=None,iter=1,use_weights=False,regression=True): """Computes the alm of an Healpix map. Input: - m: a ndarray (not polarized) or a list of 3 ndarray (polarized) Parameters: - lmax : maximum l of the power spectrum. Default: 3*nside-1 - mmax : maximum m of the alm. Default: lmax - iter : number of iteration (default: 1) - use_weights: whether to use ring weights or not. Default: False. - regression: if True, subtract map average before computing alm. Default: True. Return: - alm as one ndarray or a tuple of 3 ndarrays """ datapath = DATAPATH #os.path.dirname(__file__)+'/data' nside = _get_nside(m) if lmax is None: lmax = 3*nside-1 if mmax is None or mmax < 0 or mmax > lmax: mmax = lmax # Check the presence of weights file if use_weights: weightfile = 'weight_ring_n%05d.fits' % (nside) if not os.path.isfile(datapath+'/'+weightfile): raise IOError('File not found : '+datapath+'/'+weightfile) alm = sphtlib._map2alm(m,lmax=lmax,mmax=mmax,cl=False, iter=iter, use_weights=use_weights,data_path=datapath,regression=regression) return alm
def anafast(m,lmax=None,mmax=None,iter=1,alm=False, use_weights=False, regression=True): """Computes the power spectrum of an Healpix map. Input: - m : either an array representing a map, or a list of 3 arrays representing I, Q, U maps Parameters: - lmax : maximum l of the power spectrum (default: 3*nside-1) - mmax : maximum m of the alm (default: lmax) - iter : number of iteration (default: 1) - alm : (boolean) whether to return alm or not (if True, both are returned in a tuple) - regression : if True, map average is removed before computing alm. Default: True. Return: - if alm==False: return cl or a list of cl's (TT,TE,EE,BB) - if alm==True: return a tuple with cl or a list of cl's and alm or a list of alm's """ datapath = DATAPATH #os.path.dirname(__file__)+'/data' nside = _get_nside(m) if lmax is None: lmax = 3*nside-1 if mmax is None or mmax < 0 or mmax > lmax: mmax = lmax # Check the presence of weights file if use_weights: weightfile = 'weight_ring_n%05d.fits' % (nside) if not os.path.isfile(datapath+'/'+weightfile): raise IOError('File not found : '+datapath+'/'+weightfile) clout,almout = sphtlib._map2alm(m,lmax=lmax,mmax=mmax,iter=iter,cl=True, use_weights=use_weights,data_path=datapath,regression=regression) if alm: return (clout,almout) else: return clout
def anafast(m, lmax=None, mmax=None, iter=1, alm=False, use_weights=False, regression=True): """Computes the power spectrum of an Healpix map. Parameters ---------- m : float, array-like shape (Npix,) or (3, Npix) Either an array representing a map, or a sequence of 3 arrays representing I, Q, U maps lmax : int, scalar, optional Maximum l of the power spectrum (default: 3*nside-1) mmax : int, scalar, optional Maximum m of the alm (default: lmax) iter : int, scalar, optional Number of iteration (default: 1) alm : bool, scalar, optional If True, returns both cl and alm, otherwise only cl is returned regression : bool, scalar, optional If True, map average is removed before computing alm. Default: True. Returns ------- res : array or sequence of arrays If *alm* is False, returns cl or a list of cl (TT, EE, BB, TE for polarized input map) Otherwise, returns a tuple (cl, alm), where cl is as above and alm is the spherical harmonic transform or a list of almT, almE, almB for polarized input """ datapath = DATAPATH #os.path.dirname(__file__)+'/data' nside = _get_nside(m) if lmax is None: lmax = 3 * nside - 1 if mmax is None or mmax < 0 or mmax > lmax: mmax = lmax # Check the presence of weights file if use_weights: weightfile = 'weight_ring_n%05d.fits' % (nside) if not os.path.isfile(datapath + '/' + weightfile): raise IOError('File not found : ' + datapath + '/' + weightfile) # Replace UNSEEN pixels with zeros m[m == UNSEEN] = 0 clout, almout = sphtlib._map2alm(m, lmax=lmax, mmax=mmax, iter=iter, cl=True, use_weights=use_weights, data_path=datapath, regression=regression) if alm: return (clout, almout) else: return clout
def map2alm(m, lmax=None, mmax=None, iter=1, use_weights=False, regression=True): """Computes the alm of an Healpix map. Parameters ---------- m : array-like, shape (Npix,) or (3, Npix) The input map or a list of 3 input maps (polariztion). lmax : int, scalar, optional Maximum l of the power spectrum. Default: 3*nside-1 mmax : int, scalar, optional Maximum m of the alm. Default: lmax iter : int, scalar, optional Number of iteration (default: 1) use_weights: bool, scalar, optional If True, use the ring weighting. Default: False. regression: bool, scalar, optional If True, subtract map average before computing alm. Default: True. Returns ------- alm : array or tuple of array alm or a tuple of 3 alm (almT, almE, almB) if polarized input. """ datapath = DATAPATH #os.path.dirname(__file__)+'/data' nside = _get_nside(m) if lmax is None: lmax = 3 * nside - 1 if mmax is None or mmax < 0 or mmax > lmax: mmax = lmax # Replace UNSEEN pixels with zeros m[m == UNSEEN] = 0 # Check the presence of weights file if use_weights: weightfile = 'weight_ring_n%05d.fits' % (nside) if not os.path.isfile(datapath + '/' + weightfile): raise IOError('File not found : ' + datapath + '/' + weightfile) alm = sphtlib._map2alm(m, lmax=lmax, mmax=mmax, cl=False, iter=iter, use_weights=use_weights, data_path=datapath, regression=regression) return alm
def anafast(m,lmax=None,mmax=None,iter=1,alm=False, use_weights=False, regression=True): """Computes the power spectrum of an Healpix map. Parameters ---------- m : float, array-like shape (Npix,) or (3, Npix) Either an array representing a map, or a sequence of 3 arrays representing I, Q, U maps lmax : int, scalar, optional Maximum l of the power spectrum (default: 3*nside-1) mmax : int, scalar, optional Maximum m of the alm (default: lmax) iter : int, scalar, optional Number of iteration (default: 1) alm : bool, scalar, optional If True, returns both cl and alm, otherwise only cl is returned regression : bool, scalar, optional If True, map average is removed before computing alm. Default: True. Returns ------- res : array or sequence of arrays If *alm* is False, returns cl or a list of cl (TT, EE, BB, TE for polarized input map) Otherwise, returns a tuple (cl, alm), where cl is as above and alm is the spherical harmonic transform or a list of almT, almE, almB for polarized input """ datapath = DATAPATH #os.path.dirname(__file__)+'/data' nside = _get_nside(m) if lmax is None: lmax = 3*nside-1 if mmax is None or mmax < 0 or mmax > lmax: mmax = lmax # Check the presence of weights file if use_weights: weightfile = 'weight_ring_n%05d.fits' % (nside) if not os.path.isfile(datapath+'/'+weightfile): raise IOError('File not found : '+datapath+'/'+weightfile) # Replace UNSEEN pixels with zeros m[m == UNSEEN] = 0 clout,almout = sphtlib._map2alm(m,lmax=lmax,mmax=mmax,iter=iter,cl=True, use_weights=use_weights,data_path=datapath, regression=regression) if alm: return (clout,almout) else: return clout
def anafast(m, lmax=None, mmax=None, iter=1, alm=False, use_weights=False, regression=True): """Computes the power spectrum of an Healpix map. Input: - m : either an array representing a map, or a list of 3 arrays representing I, Q, U maps Parameters: - lmax : maximum l of the power spectrum (default: 3*nside-1) - mmax : maximum m of the alm (default: lmax) - iter : number of iteration (default: 1) - alm : (boolean) whether to return alm or not (if True, both are returned in a tuple) - regression : if True, map average is removed before computing alm. Default: True. Return: - if alm==False: return cl or a list of cl's (TT,EE,BB,TE) - if alm==True: return a tuple with cl or a list of cl's and alm or a list of alm's """ datapath = DATAPATH #os.path.dirname(__file__)+'/data' nside = _get_nside(m) if lmax is None: lmax = 3 * nside - 1 if mmax is None or mmax < 0 or mmax > lmax: mmax = lmax # Check the presence of weights file if use_weights: weightfile = 'weight_ring_n%05d.fits' % (nside) if not os.path.isfile(datapath + '/' + weightfile): raise IOError('File not found : ' + datapath + '/' + weightfile) clout, almout = sphtlib._map2alm(m, lmax=lmax, mmax=mmax, iter=iter, cl=True, use_weights=use_weights, data_path=datapath, regression=regression) if alm: return (clout, almout) else: return clout
def map2alm(m,lmax=None,mmax=None,iter=1,use_weights=False,regression=True): """Computes the alm of an Healpix map. Parameters ---------- m : array-like, shape (Npix,) or (3, Npix) The input map or a list of 3 input maps (polariztion). lmax : int, scalar, optional Maximum l of the power spectrum. Default: 3*nside-1 mmax : int, scalar, optional Maximum m of the alm. Default: lmax iter : int, scalar, optional Number of iteration (default: 1) use_weights: bool, scalar, optional If True, use the ring weighting. Default: False. regression: bool, scalar, optional If True, subtract map average before computing alm. Default: True. Returns ------- alm : array or tuple of array alm or a tuple of 3 alm (almT, almE, almB) if polarized input. """ datapath = DATAPATH #os.path.dirname(__file__)+'/data' nside = _get_nside(m) if lmax is None: lmax = 3*nside-1 if mmax is None or mmax < 0 or mmax > lmax: mmax = lmax # Replace UNSEEN pixels with zeros m[m == UNSEEN] = 0 # Check the presence of weights file if use_weights: weightfile = 'weight_ring_n%05d.fits' % (nside) if not os.path.isfile(datapath+'/'+weightfile): raise IOError('File not found : '+datapath+'/'+weightfile) alm = sphtlib._map2alm(m,lmax=lmax,mmax=mmax,cl=False, iter=iter, use_weights=use_weights,data_path=datapath, regression=regression) return alm
def map2alm(m, lmax=None, mmax=None, iter=1, use_weights=False, regression=True): """Computes the alm of an Healpix map. Input: - m: a ndarray (not polarized) or a list of 3 ndarray (polarized) Parameters: - lmax : maximum l of the power spectrum. Default: 3*nside-1 - mmax : maximum m of the alm. Default: lmax - iter : number of iteration (default: 1) - use_weights: whether to use ring weights or not. Default: False. - regression: if True, subtract map average before computing alm. Default: True. Return: - alm as one ndarray or a tuple of 3 ndarrays """ datapath = DATAPATH #os.path.dirname(__file__)+'/data' nside = _get_nside(m) if lmax is None: lmax = 3 * nside - 1 if mmax is None or mmax < 0 or mmax > lmax: mmax = lmax # Check the presence of weights file if use_weights: weightfile = 'weight_ring_n%05d.fits' % (nside) if not os.path.isfile(datapath + '/' + weightfile): raise IOError('File not found : ' + datapath + '/' + weightfile) alm = sphtlib._map2alm(m, lmax=lmax, mmax=mmax, cl=False, iter=iter, use_weights=use_weights, data_path=datapath, regression=regression) return alm