示例#1
0
 def __call__(self, data1, data2, inverse=False, radians=False,\
              errcheck=False, nprocs=2, chunk=None, schedule='guided'):
     if self.is_latlong():
         return data1, data2
         
     grid_shape = data1.shape
     n = data1.size
     
     #Create shared memory
     shmem_data1 = mp.RawArray(ctypes.c_double, n)
     shmem_data2 = mp.RawArray(ctypes.c_double, n)
     shmem_res1 = mp.RawArray(ctypes.c_double, n)
     shmem_res2 = mp.RawArray(ctypes.c_double, n)
     
     # view shared memory as ndarrays
     _data1 = shmem_as_ndarray(shmem_data1)
     _data2 = shmem_as_ndarray(shmem_data2)
     _res1 = shmem_as_ndarray(shmem_res1)
     _res2 = shmem_as_ndarray(shmem_res2)
     
     # copy input data to shared memory
     _data1[:] = data1.ravel()
     _data2[:] = data2.ravel()
     
     # set up a scheduler to load balance the query        
     scheduler = Scheduler(n, nprocs, chunk=chunk, schedule=schedule)
             
     # Projection with multiple processes
     proj_call_args = [scheduler, shmem_data1, shmem_data2, shmem_res1,\
                       shmem_res2, self._args, self._kwargs, inverse,\
                       radians, errcheck]
     
     _run_jobs(_parallel_proj, proj_call_args, nprocs)
     return _res1.copy().reshape(grid_shape), _res2.copy().reshape(grid_shape)
示例#2
0
    def __init__(self, data, leafsize=10, nprocs=2, chunk=None,\
                 schedule='guided'):
        '''
        Same as cKDTree.__init__ except that an internal copy
        of data to shared memory is made.
        Extra keyword arguments:
        chunk : Minimum chunk size for the load balancer.
        schedule: Strategy for balancing work load
        ('static', 'dynamic' or 'guided').
        '''

        self.n, self.m = data.shape
        # Allocate shared memory for data
        self.shmem_data = mp.RawArray(ctypes.c_double, self.n*self.m)
        
        # View shared memory as ndarray, and copy over the data.
        # The RawArray objects have information about the dtype and
        # buffer size.
        _data = shmem_as_ndarray(self.shmem_data).reshape((self.n, self.m))
        _data[:,:] = data
        
        # Initialize parent, we must do this last because
        # cKDTree stores a reference to the data array. We pass in
        # the copy in shared memory rather than the origial data.
        self.leafsize = leafsize
        self._nprocs = nprocs
        self._chunk = chunk
        self._schedule = schedule        
示例#3
0
def _parallel_transform(scheduler, lons, lats, n, coords, ierr, err_msg):
    try:
        # View shared memory as ndarrays.
        _lons = shmem_as_ndarray(lons)
        _lats = shmem_as_ndarray(lats)
        _coords = shmem_as_ndarray(coords).reshape((n, 3))
        
        #Transform to cartesian coordinates
        for s in scheduler:
            _coords[s, 0] = R*np.cos(np.radians(_lats[s]))*np.cos(np.radians(_lons[s]))
            _coords[s, 1] = R*np.cos(np.radians(_lats[s]))*np.sin(np.radians(_lons[s]))
            _coords[s, 2] = R*np.sin(np.radians(_lats[s]))
    # An error occured, increment the return value ierr.
    # Access to ierr is serialized by multiprocessing.
    except Exception, e:
        ierr.value += 1
        err_msg.value = e.message  
示例#4
0
def _parallel_query(scheduler, # scheduler for load balancing
                    data, ndata, ndim, leafsize, # data needed to reconstruct the kd-tree
                    x, nx, d, i, # query data and results
                    k, eps, p, dub, # auxillary query parameters
                    ierr, err_msg): # return values (0 on success)
    
    try:     
        # View shared memory as ndarrays.
        _data = shmem_as_ndarray(data).reshape((ndata, ndim))
        _x = shmem_as_ndarray(x).reshape((nx, ndim))
        if k == 1:
            _d = shmem_as_ndarray(d)
            _i = shmem_as_ndarray(i)
        else:
            _d = shmem_as_ndarray(d).reshape((nx, k))
            _i = shmem_as_ndarray(i).reshape((nx, k))

        # Reconstruct the kd-tree from the data.
        import scipy.spatial as sp
        kdtree = sp.cKDTree(_data, leafsize=leafsize)

        # Query for nearest neighbours, using slice ranges,
        # from the load balancer.
        for s in scheduler:
            if k == 1:
                _d[s], _i[s] = kdtree.query(_x[s,:], k=1, eps=eps, p=p,\
                                                distance_upper_bound=dub)
            else:
                _d[s,:], _i[s,:] = kdtree.query(_x[s,:], k=k, eps=eps, p=p,\
                                                distance_upper_bound=dub)
    # An error occured, increment the return value ierr.
    # Access to ierr is serialized by multiprocessing.
    except Exception, e:
        ierr.value += 1
        err_msg.value = e.message  
示例#5
0
def _parallel_proj(scheduler, data1, data2, res1, res2, proj_args, proj_kwargs,\
                   inverse, radians, errcheck, ierr, err_msg):
    try:
        # View shared memory as ndarrays.
        _data1 = shmem_as_ndarray(data1)
        _data2 = shmem_as_ndarray(data2)
        _res1 = shmem_as_ndarray(res1)
        _res2 = shmem_as_ndarray(res2)
        
        #Initialise pyproj
        proj = pyproj.Proj(*proj_args, **proj_kwargs)
        
        #Reproject data segment
        for s in scheduler:
            _res1[s], _res2[s] = proj(_data1[s], _data2[s], inverse=inverse,\
                                       radians=radians, errcheck=errcheck)
    
    # An error occured, increment the return value ierr.
    # Access to ierr is serialized by multiprocessing.
    except Exception, e:
        ierr.value += 1
        err_msg.value = e.message  
示例#6
0
    def query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf):
        '''
        Same as cKDTree.query except parallelized with multiple
        processes and shared memory.        
        '''
        
        # allocate shared memory for x and result
        nx = x.shape[0]
        shmem_x = mp.RawArray(ctypes.c_double, nx*self.m)
        shmem_d = mp.RawArray(ctypes.c_double, nx*k)
        shmem_i = mp.RawArray(ctypes.c_int, nx*k)
        
        # view shared memory as ndarrays
        _x = shmem_as_ndarray(shmem_x).reshape((nx, self.m))
        if k == 1:
            _d = shmem_as_ndarray(shmem_d)
            _i = shmem_as_ndarray(shmem_i)
        else:
            _d = shmem_as_ndarray(shmem_d).reshape((nx, k))
            _i = shmem_as_ndarray(shmem_i).reshape((nx, k))
        
        # copy x to shared memory
        _x[:] = x
        
        # set up a scheduler to load balance the query        
        scheduler = Scheduler(nx, self._nprocs, chunk=self._chunk,\
                              schedule=self._schedule)

        # query with multiple processes
        query_args = [scheduler, self.shmem_data, self.n, self.m,\
                      self.leafsize, shmem_x, nx, shmem_d, shmem_i,\
                      k, eps, p, distance_upper_bound]
                
        _run_jobs(_parallel_query, query_args, self._nprocs)
        # return results (private memory)
        return _d.copy(), _i.copy()