示例#1
0
def wavedec(data, wavelet, mode='sym', level=None):
    """
    Multilevel 1D Discrete Wavelet Transform of data.
    Returns coefficients list - [cAn, cDn, cDn-1, ..., cD2, cD1]

    data    - input data
    wavelet - wavelet to use (Wavelet object or name string)
    mode    - signal extension mode, see MODES
    level   - decomposition level. If level is None then it will be
              calculated using `dwt_max_level` function.
    """

    if not isinstance(wavelet, Wavelet):
        wavelet = Wavelet(wavelet)

    if level is None:
        level = dwt_max_level(len(data), wavelet.dec_len)
    elif level < 0:
        raise ValueError("Level value of %d is too low . Minimum level is 0." %
                         level)

    coeffs_list = []

    a = data
    for i in xrange(level):
        a, d = dwt(a, wavelet, mode)
        coeffs_list.append(d)

    coeffs_list.append(a)
    coeffs_list.reverse()

    return coeffs_list
示例#2
0
def wavelet_for_name(name):
    if not isinstance(name, basestring):
        raise TypeError("Wavelet name must be of string type, not %s" %
                        type(name))
    try:
        wavelet = Wavelet(name)
    except ValueError:
        raise
        #raise ValueError("Invalid wavelet name - %s." % name)
    return wavelet
示例#3
0
    def __init__(self, data, wavelet, mode='sp1', maxlevel=None):
        super(WaveletPacket2D, self).__init__(None, data, "")

        if not isinstance(wavelet, Wavelet):
            wavelet = Wavelet(wavelet)
        self.wavelet = wavelet
        self.mode = mode

        if data is not None:
            data = numerix.as_float_array(data)
            assert len(data.shape) == 2
            self.data_size = data.shape
            if maxlevel is None:
                maxlevel = dwt_max_level(min(self.data_size), self.wavelet)
        else:
            self.data_size = None
        self._maxlevel = maxlevel
示例#4
0
def wavedec2(data, wavelet, mode='sym', level=None):
    """
    Multilevel 2D Discrete Wavelet Transform.
    
    data    - 2D input data
    wavelet - wavelet to use (Wavelet object or name string)
    mode    - signal extension mode, see MODES
    level   - decomposition level. If level is None then it will be
              calculated using `dwt_max_level` function .

    Returns coefficients list - [cAn, (cHn, cVn, cDn), ... (cH1, cV1, cD1)]
    """

    data = as_float_array(data)

    if len(data.shape) != 2:
        raise ValueError("Expected 2D input data.")

    if not isinstance(wavelet, Wavelet):
        wavelet = Wavelet(wavelet)

    if level is None:
        size = min(data.shape)
        level = dwt_max_level(size, wavelet.dec_len)
    elif level < 0:
        raise ValueError("Level value of %d is too low . Minimum level is 0." %
                         level)

    coeffs_list = []

    a = data
    for i in xrange(level):
        a, ds = dwt2(a, wavelet, mode)
        coeffs_list.append(ds)

    coeffs_list.append(a)
    coeffs_list.reverse()

    return coeffs_list
示例#5
0
文件: multidim.py 项目: hal2001/pywt
def idwt2(coeffs, wavelet, mode='sym'):
    """
    2D Inverse Discrete Wavelet Transform. Reconstruct data from coefficients
    arrays.

    coeffs  - four 2D coefficients arrays arranged as follows (in the same way
              as dwt2 output -- see dwt2 description for details):

        (approximation,
                (horizontal details,
                vertical details,
                diagonal details)
        )

    wavelet - wavelet to use (Wavelet object or name string)
    mode    - signal extension mode, see MODES
    """

    if len(coeffs) != 2 or len(coeffs[1]) != 3:
        raise ValueError("Invalid coeffs param")

    # L -low-pass data, H - high-pass data
    LL, (LH, HL, HH) = coeffs

    if not LL is None: LL = transpose(LL)
    if not LH is None: LH = transpose(LH)
    if not HL is None: HL = transpose(HL)
    if not HH is None: HH = transpose(HH)

    all_none = True
    for arr in (LL, LH, HL, HH):
        if arr is not None:
            all_none = False
            if len(arr.shape) != 2:
                raise TypeError("All input coefficients arrays must be 2D.")
    del arr
    if all_none:
        raise ValueError(
            "At least one input coefficients array must not be None.")

    if not isinstance(wavelet, Wavelet):
        wavelet = Wavelet(wavelet)

    mode = MODES.from_object(mode)

    # idwt columns
    L = []
    append_L = L.append
    if LL is None and LH is None:
        L = None
    else:
        if LL is None:
            LL = cycle([
                None
            ])  # IDWT can handle None input values - equals to zero-array
        if LH is None:
            LH = cycle([
                None
            ])  # IDWT can handle None input values - equals to zero-array
        for rowL, rowH in izip(LL, LH):
            append_L(idwt(rowL, rowH, wavelet, mode, 1))
    del LL, LH

    H = []
    append_H = H.append
    if HL is None and HH is None:
        H = None
    else:
        if HL is None:
            HL = cycle([
                None
            ])  # IDWT can handle None input values - equals to zero-array
        if HH is None:
            HH = cycle([
                None
            ])  # IDWT can handle None input values - equals to zero-array
        for rowL, rowH in izip(HL, HH):
            append_H(idwt(rowL, rowH, wavelet, mode, 1))
    del HL, HH

    if L is not None:
        L = transpose(L)
    if H is not None:
        H = transpose(H)

    # idwt rows
    data = []
    append_data = data.append
    if L is None:
        L = cycle(
            [None])  # IDWT can handle None input values - equals to zero-array
    if H is None:
        H = cycle(
            [None])  # IDWT can handle None input values - equals to zero-array
    for rowL, rowH in izip(L, H):
        append_data(idwt(rowL, rowH, wavelet, mode, 1))

    return array(data, default_dtype)
示例#6
0
文件: multidim.py 项目: hal2001/pywt
def swt2(data, wavelet, level, start_level=0):
    """
    2D Stationary Wavelet Transform.

    data    - 2D array with input data
    wavelet - wavelet to use (Wavelet object or name string)
    level   - how many decomposition steps to perform
    start_level - the level at which the decomposition will start

    Returns list of approximation and details coefficients:

        [
            (cA_n,
                (cH_n, cV_n, cD_n)
            ),
            (cA_n+1,
                (cH_n+1, cV_n+1, cD_n+1)
            ),
            ...,
            (cA_n+level,
                (cH_n+level, cV_n+level, cD_n+level)
            )
        ]

    where cA is approximation, cH is horizontal details, cV is
    vertical details, cD is diagonal details and n is start_level.
    """

    data = as_float_array(data)
    if len(data.shape) != 2:
        raise ValueError("Expected 2D data array")

    if not isinstance(wavelet, Wavelet):
        wavelet = Wavelet(wavelet)

    ret = []
    for i in range(start_level, start_level + level):
        # filter rows
        H, L = [], []
        append_L = L.append
        append_H = H.append
        for row in data:
            cA, cD = swt(row, wavelet, level=1, start_level=i)[0]
            append_L(cA)
            append_H(cD)
        del data

        # filter columns
        H = transpose(H)
        L = transpose(L)

        LL, LH = [], []
        append_LL = LL.append
        append_LH = LH.append
        for row in L:
            cA, cD = swt(array(row, default_dtype),
                         wavelet,
                         level=1,
                         start_level=i)[0]
            append_LL(cA)
            append_LH(cD)
        del L

        HL, HH = [], []
        append_HL = HL.append
        append_HH = HH.append
        for row in H:
            cA, cD = swt(array(row, default_dtype),
                         wavelet,
                         level=1,
                         start_level=i)[0]
            append_HL(cA)
            append_HH(cD)
        del H

        # build result structure
        #     (approx.,        (horizontal,    vertical,       diagonal))
        approx = transpose(LL)
        ret.append((approx, (transpose(LH), transpose(HL), transpose(HH))))

        data = approx  # for next iteration

    return ret
示例#7
0
文件: multidim.py 项目: hal2001/pywt
def dwt2(data, wavelet, mode='sym'):
    """
    2D Discrete Wavelet Transform.

    data    - 2D array with input data
    wavelet - wavelet to use (Wavelet object or name string)
    mode    - signal extension mode, see MODES

    Returns approximaion and three details 2D coefficients arrays.

    The result form four 2D coefficients arrays organized in tuples:

        (approximation,
                (horizontal details,
                vertical details,
                diagonal details)
        )

    which sometimes is also interpreted as layed out in one 2D array
    of coefficients, where:

                                -----------------
                                |       |       |
                                | A(LL) | H(LH) |
                                |       |       |
        (A, (H, V, D))  <--->   -----------------
                                |       |       |
                                | V(HL) | D(HH) |
                                |       |       |
                                -----------------
    """

    data = as_float_array(data)
    if len(data.shape) != 2:
        raise ValueError("Expected 2D data array")

    if not isinstance(wavelet, Wavelet):
        wavelet = Wavelet(wavelet)

    mode = MODES.from_object(mode)

    # filter rows
    H, L = [], []
    append_L = L.append
    append_H = H.append
    for row in data:
        cA, cD = dwt(row, wavelet, mode)
        append_L(cA)
        append_H(cD)
    del data

    # filter columns
    H = transpose(H)
    L = transpose(L)

    LL, LH = [], []
    append_LL = LL.append
    append_LH = LH.append
    for row in L:
        cA, cD = dwt(array(row, default_dtype), wavelet, mode)
        append_LL(cA)
        append_LH(cD)
    del L

    HL, HH = [], []
    append_HL = HL.append
    append_HH = HH.append
    for row in H:
        cA, cD = dwt(array(row, default_dtype), wavelet, mode)
        append_HL(cA)
        append_HH(cD)
    del H

    # build result structure
    #     (approx.,        (horizontal,    vertical,       diagonal))
    ret = (transpose(LL), (transpose(LH), transpose(HL), transpose(HH)))

    return ret