示例#1
0
def main(argv):

	path = os.path.expanduser('~/Documents/data_old/OPD40cm/20130809/')
	airmasstables = ['G9348/timeairmass.dat', 'SA111773/timeairmass.dat', 'SA114750/timeairmass.dat']
	#airmasstables = ['SA114750/timeairmass.dat']
	targetRa = [21.8736111111111,19.6211111111111,22.6958333333333]
	targetDec = [2.38888888888889,0.183055555555556,1.21055555555556]
	
	sitelat =-25.3416666667
	sitelong = 3.21148148148
	#airmasstables = np.loadtxt(os.path.join(path,airmasstableslis),dtype='S',ndmin=1)
		
	T0 = 2456514.
	nightstart = 2456514.4
	nightend = 2456514.85

	timeStamp = np.linspace(nightstart,nightend,1e3)
	
	lstStamp = [_skysub.lst(time,sitelong) for time in timeStamp]

	ax = py.subplot(111)
	ylim = [0,0.5]
	
	color = ['b','r','g','y','c','m', 'k']
	
	for i in range(len(airmasstables)):
		data = np.loadtxt(os.path.join(path,airmasstables[i]),unpack=True,converters={0:datestr2JD})
		secz = np.array([_skysub.true_airmass(_skysub.secant_z(_skysub.altit(targetDec[i],lst - targetRa[i],sitelat)[0])) for lst in lstStamp])
		data[1] = np.array([_skysub.true_airmass(_skysub.secant_z(_skysub.altit(targetDec[i],_skysub.lst(time,sitelong) - targetRa[i],sitelat)[0])) for time in data[0]])

		mm = np.bitwise_and(data[1] > 0, data[1] < 3)
		py.plot(data[0][mm]-T0,np.log10(data[1][mm]),color[i]+'o')
		py.plot(data[0][mm]-T0,np.log10(data[1][mm]),color[i]+'o')
		mm = np.bitwise_and(secz > 0, secz < 3)

		py.plot(timeStamp[mm]-T0,np.log10(secz[mm]),color[i]+'-')


	py.plot([nightstart-T0,nightstart-T0],ylim,'k--',lw=1.1,alpha=1.0)
	py.plot([nightend-T0,nightend-T0],ylim,'k--',lw=1.1,alpha=1.0)
	py.ylim(ylim[1],ylim[0])
	
	a=ax.get_yticks().tolist()
	print a
	newyticks = ['%.2f'%(10**(val)) for val in a]
	print newyticks
	ax.set_yticklabels(newyticks)

	py.ylabel('airmass',size=18)
	py.xlabel('JD - %.0f'%T0,size=18)
	py.savefig(os.path.expanduser('~/Develop/SMAPs/Figures/plot_airmasses_obs.pdf'))
	py.show()
		
	return 0
示例#2
0
文件: util.py 项目: tribeiro/SMAPS
def getTargets(T0,T1,RA,DEC,mask,texp,sitelat,sitelong):

	obsmask = mask
	
	tbin = 0
	
	ra = RA[obsmask]
	dec = DEC[obsmask]
	mm = obsmask[obsmask]
	targets = np.zeros(len(np.arange(T0,T1,texp)))
	xaxis = np.arange(len(RA))[obsmask]
	
	# Rejecting objects that are close to the moon
	
	for time in np.arange(T0,T1,texp):

		ra = RA[obsmask]
		dec = DEC[obsmask]
		xaxis = np.arange(len(RA))[obsmask]
		
		lst = _skysub.lst(time,sitelong) #*360./24.
		ha = lst - ra
		alt = np.array([_skysub.altit(dec[i],ha[i],sitelat)[0] for i in range(len(ha))])
		stg = alt.argmax()

		mm = obsmask[obsmask]
		mm[stg] = False
		obsmask[obsmask] = mm


		targets[tbin] = xaxis[stg]

		tbin+=1
	#print i
	return targets
示例#3
0
文件: util.py 项目: tribeiro/SMAPS
def airmass(ra,dec,time,sitelat,sitelong):

	lst = _skysub.lst(time,sitelong) #*360./24.
	ha = lst - ra
	alt = _skysub.altit(dec,ha,sitelat)[0]

	return alt 
 def computesky(self):
     # computes many quantities so they're self-consistent
     sidtemp = _skysub.lst(self.jd, self.longit)
     self.sidereal = ra(sidtemp)  # it behaves like an RA
     self.decimalyr = self.julian_epoch()
     self.CoordsOfDate = self.precess(self.julian_epoch())
     self.hanow = ha(self.sidereal.val - self.CoordsOfDate.ra.val)
     [self.altit,self.az,self.parang] = \
        _skysub.altit(self.CoordsOfDate.dec.val,self.hanow.val, \
      self.lat)
     self.secz = _skysub.secant_z(self.altit)
     self.airmass = _skysub.true_airmass(self.secz)
示例#5
0
	def computesky(self) :
		# computes many quantities so they're self-consistent
		sidtemp = _skysub.lst(self.jd,self.longit)
		self.sidereal = ra(sidtemp) # it behaves like an RA
		self.decimalyr = self.julian_epoch()
		self.CoordsOfDate = self.precess(self.julian_epoch())
		self.hanow = ha(self.sidereal.val - self.CoordsOfDate.ra.val)
		[self.altit,self.az,self.parang] = \
		   _skysub.altit(self.CoordsOfDate.dec.val,self.hanow.val, \
			self.lat)
		self.secz = _skysub.secant_z(self.altit)
		self.airmass = _skysub.true_airmass(self.secz)
示例#6
0
    def selectScienceTargets(self):
        '''
		Based on configuration parameters select a good set of targets to run scheduler on a specified Julian Day.
		'''

        session = Session()

        # [To be done] Reject objects that are close to the moon

        for tbin, time in enumerate(self.obsTimeBins):

            if self.obsTimeMask[tbin] < 1.0:
                # Select objects from database that where not observed and where not scheduled yet
                # In the future may include targets that where observed a number of nights ago.
                # This is still incomplete. We should also consider the distance from the previous pointing to the next!
                # Since a target can have a higher airmass but be farther away from a neaby target that will take less time
                # to point.
                # one way of selecting targets that are close together and have good airmass is to select regions that are close
                # to the current location. it can start as searching an area with r1 ~ 10 x the FoV and, if there are no regions
                # to to x2 that and then x4 that. If still there are no targets, than search for the higher in the sky.
                targets = session.query(Targets).filter(
                    Targets.observed == False).filter(
                        Targets.scheduled == False).filter(
                            Targets.type == self.sciFlag)

                lst = _skysub.lst(time, self.sitelong)  #*360./24.
                alt = np.array([
                    _skysub.altit(target.targetDec, lst - target.targetRa,
                                  self.sitelat)[0] for target in targets
                ])
                stg = alt.argmax()

                log.info('Selecting %s' % (targets[stg]))

                # Marking target as schedule
                tst = session.query(Targets).filter(
                    Targets.id == targets[stg].id)

                for t in tst:
                    t.scheduled = True
                    session.commit()
                    self.addObservation(t, time)

                self.obsTimeMask[tbin] = 1.0
            else:
                log.debug(
                    'Bin %3i @mjd=%.3f already filled up with observations. Skipping...'
                    % (tbin, time - 2400000.5))

        #print i
        return 0  #targets
示例#7
0
	def __init__(self,ra,dec,ii,jj,ntrays,exptime):

		# Default observatory information
		self.sitelat = -30.228
		self.sitelong = 4.715
		# Default sun Max Alt (defines star/end of night)
		self.sunMaxAlt = -18.
		self.fullmoon = 0.95

		self.vfac = 0.65
		self.rvfac = 0.5
		
		# Store tiles coordinate information
		self._ii = np.array(ii)
		self._jj = np.array(jj)
		self._ra = np.array(ra)
		self._dec = np.array(dec)
		
		
		# Store maximum altitude of tiles
		self.maxAltit = []
		for i in range(ntrays):
			self.maxAltit.append(np.array([_skysub.altit(self._dec[i][j],0.,self.sitelat)[0] for j in range(len(ra[i]))]))

		if len(exptime) != ntrays:
			raise IOError('Number of trays/filters must match number of exposure times. ')

		self.ntrays = ntrays		# Number of trays/filters
		self.exptime = np.array(exptime)
		
		# Store which observation where performed or not
		self.obs = []
		for i in range(ntrays):
			self.obs.append(np.zeros(len(ii[i]))==0)
		
		# Store tiles to be repeated
		# tile - tile index
		# day  - day to be repeated
		# nrepeat - number of times to repeat
		# nobs - number of times tile was observed
		self.repeatInfo = {	'tile' : np.arange(len(self._ra)),
							'day' : np.zeros(len(self._ra)),
							'nobs' : np.zeros(len(self._ra),dtype=int)}
		self._repeatTray = 0
		self.rexptime = 0
		self._nrepeat = 0
		self._dTime = 0
示例#8
0
文件: tao.py 项目: tribeiro/SMAPS
	def selectScienceTargets(self):
		'''
		Based on configuration parameters select a good set of targets to run scheduler on a specified Julian Day.
		'''
		
		session = Session()
		
		# [To be done] Reject objects that are close to the moon

		for tbin,time in enumerate(self.obsTimeBins):

			if self.obsTimeMask[tbin] < 1.0:
				# Select objects from database that where not observed and where not scheduled yet
				# In the future may include targets that where observed a number of nights ago.
				# This is still incomplete. We should also consider the distance from the previous pointing to the next!
				# Since a target can have a higher airmass but be farther away from a neaby target that will take less time
				# to point.
				# one way of selecting targets that are close together and have good airmass is to select regions that are close
				# to the current location. it can start as searching an area with r1 ~ 10 x the FoV and, if there are no regions
				# to to x2 that and then x4 that. If still there are no targets, than search for the higher in the sky.
				targets = session.query(Targets).filter(Targets.observed == False).filter(Targets.scheduled == False).filter(Targets.type == self.sciFlag)
			
				lst = _skysub.lst(time,self.sitelong) #*360./24.
				alt = np.array([_skysub.altit(target.targetDec,lst - target.targetRa,self.sitelat)[0] for target in targets])
				stg = alt.argmax()

				self.log.info('Selecting %s'%(targets[stg]))
				
				# Marking target as schedule
				tst = session.query(Targets).filter(Targets.id == targets[stg].id)

				for t in tst:
					t.scheduled = True
					session.commit()
					self.addObservation(t,time)
				
				self.obsTimeMask[tbin] = 1.0
			else:
				self.log.debug('Bin %3i @mjd=%.3f already filled up with observations. Skipping...'%(tbin,time-2400000.5))
				
		#print i
		return 0 #targets
示例#9
0
def make_obs(T0,T1,RA,DEC,mask,texp):

	obsmask = np.bitwise_and(np.zeros(len(RA),dtype=int)==0,mask)
	
	i = 0
	
	for time in np.arange(T0,T1,texp):
		
		lst = _skysub.lst(time,sitelong)*360./24.
	
		#lst = _skysub.lst(time,sitelong) #*360./24.
		ha = lst - RA[obsmask]
		alt = np.array([_skysub.altit(DEC[obsmask][i],ha[i],sitelat)[0] for i in range(len(ha))])
		stg = alt.argmax()
	
		#print time,lst,np.sqrt(dist1[stg]),np.sqrt(dist2[stg]),dist[stg],RA[obsmask][stg],DEC[obsmask][stg],stg

		mm = obsmask[obsmask]
		mm[stg] = False
		obsmask[obsmask] = mm
		i+=1
			
	#print i
	return obsmask
示例#10
0
文件: tao.py 项目: tribeiro/SMAPS
	def selectStandardTargets(self,nstars=3,nairmass=3):
		'''
		Based on configuration parameters, select 'nstars' standard stars to run scheduler on a specified Julian Day. Ideally you 
		will select standard stars before your science targets so not to have a full queue. Usually standard stars are observed 
		more than once a night at different airmasses. The user can control this parameter with nairmass and the script will try
		to take care of the rest. 
		'''

		session = Session()
		
		# First of all, standard stars can be obsered multiple times in sucessive nights. I will mark all
		# stars an unscheduled.
		targets = session.query(Targets).filter(Targets.scheduled == True).filter(Targets.type == self.stdFlag)
		for target in targets:
			target.scheduled = False
			session.commit()
		
		# [To be done] Reject objects that are close to the moon

		# Selecting standard stars is not only searching for the higher in that time but select stars than can be observed at 3
		# or more (nairmass) different airmasses. It is also important to select stars with different colors (but this will be
		# taken care in the future).

		if nairmass*nstars > len(self.obsTimeBins):
			self.log.warning('Requesting more stars/observations than it will be possible to schedule. Decreasing number of requests to fit in the night.')
			nstars = len(self.obsTimeBins)/nairmass

		obsStandars = np.zeros(len(self.obsTimeBins))-1 # first selection of observable standards

		for tbin,time in enumerate(self.obsTimeBins):

			if self.obsTimeMask[tbin] < 1.0:
				# 1 - Select objects from database that where not scheduled yet (standard stars may be repited)
				#     that fits our observing night
				targets = session.query(Targets).filter(Targets.scheduled == 0).filter(Targets.type == self.stdFlag)
			
				lst = _skysub.lst(time,self.sitelong) #*360./24.
				alt = np.array([_skysub.altit(target.targetDec,lst - target.targetRa,self.sitelat)[0] for target in targets])
				stg = alt.argmax()

				self.log.info('Selecting %s'%(targets[stg]))
				
				# Marking target as schedule
				tst = session.query(Targets).filter(Targets.id == targets[stg].id)

				for t in tst:
					t.scheduled = True
					session.commit()
					obsStandars[tbin] = t.id
				
			else:
				self.log.info('Bin already filled up with observations. Skipping...')

		if len(obsStandars[obsStandars >= 0]) < nstars:
			self.log.warning('Could not find %i suitable standard stars in catalog. Only %i where found.'%(nstars,len(obsStandars[obsStandars >= 0])))
		#
		# Unmarking potential targets as scheduled
		#
		for id in obsStandars[obsStandars >= 0]:
			target = session.query(Targets).filter(Targets.id == id)
			for t in target:
				t.scheduled = False
				session.commit()
				
			tbin+=1
		#
		# Preparing a grid of altitudes for each target for each observing window
		#
		amGrid = np.zeros(len(obsStandars)*len(obsStandars)).reshape(len(obsStandars),len(obsStandars))

		for i in np.arange(len(obsStandars))[obsStandars >= 0]:
			target = session.query(Targets).filter(Targets.id == obsStandars[i])[0]
			for j in range(len(obsStandars)):
				lst = _skysub.lst(self.obsTimeBins[j],self.sitelong)
				amGrid[i][j] = _skysub.true_airmass(_skysub.secant_z(_skysub.altit(target.targetDec,lst - target.targetRa,self.sitelat)[0]))
				if amGrid[i][j] < 0:
					amGrid [i][j] = 99.
		#
		# Build a grid mask that specifies the position in time each target should be observed. This means that, when
		# selecting a single target we ocuppy more than one, non consecutive, position in the night. This grid shows where are these
		# positions.
		#
		obsMask = np.zeros(len(obsStandars)*len(obsStandars),dtype=np.bool).reshape(len(obsStandars),len(obsStandars))

		for i in np.arange(len(obsStandars))[obsStandars >= 0]:
			amObs = np.linspace(amGrid[i].min(),self.stdMaxAirmass,nairmass) # requested aimasses
			dam = np.mean(np.abs(amGrid[i][amGrid[i]<self.stdMaxAirmass][1:] - amGrid[i][amGrid[i]<self.stdMaxAirmass][:-1])) # how much airmass changes in average
			for j,am in enumerate(amObs):
				# Mark positions where target is at	specified airmass
				if j == 0:
					obsMask[i] = np.bitwise_or(obsMask[i],amGrid[i] == am)
				else:
					obsMask[i] = np.bitwise_or(obsMask[i],np.bitwise_and(amGrid[i]>am-dam,amGrid[i]<am+dam))

			#print amGrid[i][np.where(obsMask[i])]
		#
		# Now it is time to actually select the targets. It will start with the first target and then try the others
		# until it find enough standard stars, as specified by the user.
		#
		# Para cada bin em tempo, varro o bin em massa de ar por coisas observaveis. Se acho um, vejo se posso agendar
		# os outros bins. Se sim, marco o alvo para observacao, se nao, passo para o proximo. Repito ate completar a
		# lista de alvos
		#

		obsMaskTimeGrid = np.zeros(len(obsStandars),dtype=np.bool)
		nrequests = 0
		reqId = np.zeros(nstars,dtype=np.int)-1
		for tbin,time in enumerate(self.obsTimeBins[:-1]):
			# Evaluates if time slots are all available. If yes, mark orbservation and ocuppy slots.
			if ( (not obsMaskTimeGrid[obsMask[tbin]].any()) and (len(amGrid[tbin][obsMask[tbin]])>=nairmass) ):
				obsMaskTimeGrid = np.bitwise_or(obsMaskTimeGrid,obsMask[tbin])
				reqId[nrequests] = tbin
				nrequests += 1
			if nrequests >= nstars:
				break

		# Finally, requesting observations

		for id in reqId[reqId >= 0]:
			target = session.query(Targets).filter(Targets.id == obsStandars[id])[0]
			secz = amGrid[id][obsMask[id]]
			seczreq = np.zeros(nairmass,dtype=np.bool)
			amObs = np.linspace(amGrid[id].min(),self.stdMaxAirmass,nairmass) # requested aimasses
			for i,obstime in enumerate(self.obsTimeBins[obsMask[id]]):
				sindex = np.abs(amObs-secz[i]).argmin()
				if not seczreq[sindex]:
					self.log.info('Requesting observations of %s @airmass=%4.2f @mjd=%.3f...'%(target.name,secz[i],obstime-2400000.5))
					seczreq[sindex] = True
					target.scheduled = True
					session.commit()
					self.addObservation(target,obstime)
					self.obsTimeMask[obsMask[id]] = 1.0
			#print self.obsTimeBins[obsMask[id]]
			#print

		#print i
		return 0 #targets
示例#11
0
	def makeObs(self,T0,T1):
			
		time = T0
		hd = 1./24
		maskRep = []
		if self._nrepeat > 0:
			maskRep = np.bitwise_and(self.repeatInfo['day'] > 0,self.repeatInfo['nobs'] < self._nrepeat)
		else:
			maskRep = self.repeatInfo['day'] > 0

		info = ['Observations start @ JD = %12.2f'%T0,
				'Observations end   @ JD = %12.2f'%T1,
				'Total number of tiles: %5i'%self.nTiles(),
				'Tiles to observe: %5i'%(self.obsTiles()),
				'Tiles to repeate: %5i'%(len(maskRep[maskRep])) ]
		
		# count time spent observing each tray
		obsTime = np.zeros(self.ntrays+1)

		# Calculate moon for this night
		queue = []
		ramoon = 0.
		decmoon = 0.
		distmoon = 0.
		rasun = 0.
		decsun = 0.
		
		ramoon,decmoon,distmoon = _skysub.lpmoon(T0,self.sitelat,_skysub.lst(T0,self.sitelong))
		
		ill_frac=0.5*(1.-np.cos(_skysub.subtend(ramoon,decmoon,rasun,decsun)))
		
		fullmoon = False
		if ill_frac >= self.fullmoon:
			fullmoon = True
			info.append('Full moon (%5.1f)'%(ill_frac*100))
			obsTime[-1] = (T1-T0)
		else:
			info.append('Moon %5.1f       '%(ill_frac*100.))
		
		cra = -99
		cdec = -99
		
		while time < T1 and not fullmoon:
		
			obsDone = False
			tray = 0
			obsTile = -1
			# Trying the first tray

			while ( (not obsDone) and (0 <= tray < self.ntrays) ):
			
				# Local Sidereal time at start -2hours and end +2hours
				lst_start = _skysub.lst(time-2.*hd,self.sitelong)
				lst_end = _skysub.lst(time+self.exptime[tray]+2.*hd,self.sitelong)
				
				# Check if there is observation to be repeated this night.
				if self._nrepeat > 0:
					maskRep = np.bitwise_and(np.bitwise_and(self.repeatInfo['day'] > 0, self.repeatInfo['day'] <= time),self.repeatInfo['nobs'] < self._nrepeat)
				else:
					maskRep = np.bitwise_and(self.repeatInfo['day'] > 0, self.repeatInfo['day'] <= time)
				
				ra_mask = self.raMask(self._repeatTray,lst_start,lst_end)
				repeated = False
				
				if len(maskRep[maskRep]) > 0:
					ra_tmpmask = np.bitwise_and(ra_mask,maskRep)
					if ra_tmpmask.any():
						# make repeate observation
						index = np.arange(len(self._ra[self._repeatTray]))[ra_tmpmask]
						# Selecting highest in the sky at the center of the observation
						lst = _skysub.lst(time+self.exptime[self._repeatTray]/2.,self.sitelong)*360./24.
					
						ha = (lst - self._ra[self._repeatTray][ra_tmpmask])*24./360.
						alt = np.array([_skysub.altit(self._dec[self._repeatTray][j],ha[i],self.sitelat)[0] for i,j in enumerate(index)])
						if len(alt) == 0:
							info.append('[R] No observable tiles available...')
						else:
							stg = alt.argmax()
							if alt[stg] > self.maxAltit[self._repeatTray][index[stg]]*self.rvfac:
								info.append('[R] Observation complete...     ')
								self.repeatInfo['nobs'][index[stg]] += 1
								self.repeatInfo['day'][index[stg]] += self._dTime
								obsDone = True
								repeated = True
								tray = self._repeatTray
							else:
								info.append('[R] Object too low. Alt = %7.2f, Max Alt = %7.2f...                   '%(alt[stg],self.maxAltit[self._repeatTray][index[stg]]))

				ra_mask = self.raMask(tray,lst_start,lst_end)
				# Check if makes sense to continue
				if ra_mask.any() and not obsDone:

					info.append('Number of observable tiles %4i'%len(ra_mask[ra_mask]))
					
					index = np.arange(len(self._ra[tray]))[np.bitwise_and(ra_mask,self.obs[tray])]
					# Selecting highest in the sky at the center of the observation
					lst = _skysub.lst(time+self.exptime[tray]/2.,self.sitelong)*360./24.
				
					#lst = _skysub.lst(time,sitelong) #*360./24.
					ha = (lst - self._ra[tray][ra_mask])*24./360.
					alt = np.array([_skysub.altit(self._dec[tray][j],ha[i],self.sitelat)[0] for i,j in enumerate(index)])
					
					if len(alt) == 0:
						info.append('No observable tiles available...')
						# Go to next tray
						tray+=1
					else:
						#info.append(['Suitable tile available...'])
						stg = alt.argmax()
						if alt[stg] > self.maxAltit[tray][index[stg]]*self.vfac:
							info.append('Observation complete...     ')
							obsTile = index[stg]
							obsDone = True
							# check if needs to be repeated
							if tray == self._repeatTray and self.repeatInfo['nobs'][index[stg]] < self._nrepeat and self.repeatInfo['day'][index[stg]] < time:
								self.repeatInfo['day'][index[stg]] = time+self._dTime
							elif tray == self._repeatTray and self.repeatInfo['day'][index[stg]] < time and  self._nrepeat < 0:
								self.repeatInfo['day'][index[stg]] = time+self._dTime
						else:
							obsDone = False
							info.append('Object too low. Alt = %7.2f, Max Alt = %7.2f...                   '%(alt[stg],self.maxAltit[tray][index[stg]]*self.vfac))

							# Go to next tray
							tray+=1
				elif repeated:
					tray = -self._repeatTray
				else:
					tray = -1
					info.append('No tiles available...')

			tray = np.abs(tray)
			# Check if observation was performed and in which tray
			if obsDone:
				if repeated:
					obsTime[tray]+=self.rexptime
					time+=self.rexptime
				else:
					obsTime[tray]+=self.exptime[tray]
					time+=self.exptime[tray]
				self.obs[tray][obsTile] = False
				queue.append('TILE%05i %6.2f %+7.2f %16.6f %2i %8.3f'%(obsTile,self._ra[tray][obsTile],self._dec[tray][obsTile],time,tray,self.exptime[tray]))

			else:
				# Try one more time
				# See if there is any field to be repeated in the sky
				maskRep = self.repeatInfo['day'] > 0
				lst_start = _skysub.lst(time-3.*hd,self.sitelong)
				lst_end = _skysub.lst(time+self.rexptime+3.*hd,self.sitelong)
				ra_mask = self.raMask(self._repeatTray,lst_start,lst_end)
				repeated = False
				idx = 0
				if len(maskRep[maskRep]) > 0:
					ra_tmpmask = np.bitwise_and(ra_mask,maskRep)
					
					if ra_tmpmask.any():
						# make repeate observation
						index = np.arange(len(self._ra[self._repeatTray]))[ra_tmpmask]
						# Selecting highest in the sky at the center of the observation
						lst = _skysub.lst(time+self.exptime[self._repeatTray]/2.,self.sitelong)*360./24.
					
						ha = (lst - self._ra[self._repeatTray][ra_tmpmask])*24./360.
						alt = np.array([_skysub.altit(self._dec[self._repeatTray][j],ha[i],self.sitelat)[0] for i,j in enumerate(index)])
						if len(alt) == 0:
							info.append('[R] No observable tiles available...')
						else:
							stg = alt.argmax()
							if alt[stg] > self.maxAltit[self._repeatTray][index[stg]]*self.rvfac:
								info.append('[R] Observation complete...     ')
								self.repeatInfo['nobs'][index[stg]] += 1
								self.repeatInfo['day'][index[stg]] += self._dTime
								obsDone = True
								repeated = True
								tray = -self._repeatTray
								idx = index[stg]
							else:
								obsDone = False
								info.append('[R] Object too low. Alt = %7.2f, Max Alt = %7.2f [RR]...                   '%(alt[stg],self.maxAltit[self._repeatTray][index[stg]]*self.rvfac))
				if obsDone:
					obsTime[self._repeatTray] += self.rexptime
					time+=self.rexptime
				else:
					obsTime[-1] += self.exptime.max()
					time+=self.exptime.max()
		
		queueInfo = '%16.6f %6.3f '%(T0,(T1-T0)*24.)
		for tray in range(len(obsTime)):
			queueInfo += '%10.7f '%(obsTime[tray]*24.)
		return info,queue,queueInfo
示例#12
0
    def selectStandardTargets(self, nstars=3, nairmass=3):
        '''
		Based on configuration parameters, select 'nstars' standard stars to run scheduler on a specified Julian Day. Ideally you 
		will select standard stars before your science targets so not to have a full queue. Usually standard stars are observed 
		more than once a night at different airmasses. The user can control this parameter with nairmass and the script will try
		to take care of the rest. 
		'''

        session = Session()

        # First of all, standard stars can be obsered multiple times in sucessive nights. I will mark all
        # stars an unscheduled.
        targets = session.query(Targets).filter(
            Targets.scheduled == True).filter(Targets.type == self.stdFlag)
        for target in targets:
            target.scheduled = False
            session.commit()

        # [To be done] Reject objects that are close to the moon

        # Selecting standard stars is not only searching for the higher in that time but select stars than can be observed at 3
        # or more (nairmass) different airmasses. It is also important to select stars with different colors (but this will be
        # taken care in the future).

        if nairmass * nstars > len(self.obsTimeBins):
            log.warning(
                'Requesting more stars/observations than it will be possible to schedule. Decreasing number of requests to fit in the night.'
            )
            nstars = len(self.obsTimeBins) / nairmass

        obsStandars = np.zeros(len(
            self.obsTimeBins)) - 1  # first selection of observable standards

        for tbin, time in enumerate(self.obsTimeBins):

            if self.obsTimeMask[tbin] < 1.0:
                # 1 - Select objects from database that where not scheduled yet (standard stars may be repited)
                #     that fits our observing night
                targets = session.query(Targets).filter(
                    Targets.scheduled == 0).filter(
                        Targets.type == self.stdFlag)

                lst = _skysub.lst(time, self.sitelong)  #*360./24.
                alt = np.array([
                    _skysub.altit(target.targetDec, lst - target.targetRa,
                                  self.sitelat)[0] for target in targets
                ])
                stg = alt.argmax()

                log.info('Selecting %s' % (targets[stg]))

                # Marking target as schedule
                tst = session.query(Targets).filter(
                    Targets.id == targets[stg].id)

                for t in tst:
                    t.scheduled = True
                    session.commit()
                    obsStandars[tbin] = t.id

            else:
                log.info(
                    'Bin already filled up with observations. Skipping...')

        if len(obsStandars[obsStandars >= 0]) < nstars:
            log.warning(
                'Could not find %i suitable standard stars in catalog. Only %i where found.'
                % (nstars, len(obsStandars[obsStandars >= 0])))
        #
        # Unmarking potential targets as scheduled
        #
        for id in obsStandars[obsStandars >= 0]:
            target = session.query(Targets).filter(Targets.id == id)
            for t in target:
                t.scheduled = False
                session.commit()

            tbin += 1
        #
        # Preparing a grid of altitudes for each target for each observing window
        #
        amGrid = np.zeros(len(obsStandars) * len(obsStandars)).reshape(
            len(obsStandars), len(obsStandars))

        for i in np.arange(len(obsStandars))[obsStandars >= 0]:
            target = session.query(Targets).filter(
                Targets.id == obsStandars[i])[0]
            for j in range(len(obsStandars)):
                lst = _skysub.lst(self.obsTimeBins[j], self.sitelong)
                amGrid[i][j] = _skysub.true_airmass(
                    _skysub.secant_z(
                        _skysub.altit(target.targetDec, lst - target.targetRa,
                                      self.sitelat)[0]))
                if amGrid[i][j] < 0:
                    amGrid[i][j] = 99.
        #
        # Build a grid mask that specifies the position in time each target should be observed. This means that, when
        # selecting a single target we ocuppy more than one, non consecutive, position in the night. This grid shows where are these
        # positions.
        #
        obsMask = np.zeros(len(obsStandars) * len(obsStandars),
                           dtype=np.bool).reshape(len(obsStandars),
                                                  len(obsStandars))

        for i in np.arange(len(obsStandars))[obsStandars >= 0]:
            amObs = np.linspace(amGrid[i].min(), self.stdMaxAirmass,
                                nairmass)  # requested aimasses
            dam = np.mean(
                np.abs(amGrid[i][amGrid[i] < self.stdMaxAirmass][1:] -
                       amGrid[i][amGrid[i] < self.stdMaxAirmass][:-1])
            )  # how much airmass changes in average
            for j, am in enumerate(amObs):
                # Mark positions where target is at	specified airmass
                if j == 0:
                    obsMask[i] = np.bitwise_or(obsMask[i], amGrid[i] == am)
                else:
                    obsMask[i] = np.bitwise_or(
                        obsMask[i],
                        np.bitwise_and(amGrid[i] > am - dam,
                                       amGrid[i] < am + dam))

            #print amGrid[i][np.where(obsMask[i])]
        #
        # Now it is time to actually select the targets. It will start with the first target and then try the others
        # until it find enough standard stars, as specified by the user.
        #
        # Para cada bin em tempo, varro o bin em massa de ar por coisas observaveis. Se acho um, vejo se posso agendar
        # os outros bins. Se sim, marco o alvo para observacao, se nao, passo para o proximo. Repito ate completar a
        # lista de alvos
        #

        obsMaskTimeGrid = np.zeros(len(obsStandars), dtype=np.bool)
        nrequests = 0
        reqId = np.zeros(nstars, dtype=np.int) - 1
        for tbin, time in enumerate(self.obsTimeBins[:-1]):
            # Evaluates if time slots are all available. If yes, mark orbservation and ocuppy slots.
            if ((not obsMaskTimeGrid[obsMask[tbin]].any())
                    and (len(amGrid[tbin][obsMask[tbin]]) >= nairmass)):
                obsMaskTimeGrid = np.bitwise_or(obsMaskTimeGrid, obsMask[tbin])
                reqId[nrequests] = tbin
                nrequests += 1
            if nrequests >= nstars:
                break

        # Finally, requesting observations

        for id in reqId[reqId >= 0]:
            target = session.query(Targets).filter(
                Targets.id == obsStandars[id])[0]
            secz = amGrid[id][obsMask[id]]
            seczreq = np.zeros(nairmass, dtype=np.bool)
            amObs = np.linspace(amGrid[id].min(), self.stdMaxAirmass,
                                nairmass)  # requested aimasses
            for i, obstime in enumerate(self.obsTimeBins[obsMask[id]]):
                sindex = np.abs(amObs - secz[i]).argmin()
                if not seczreq[sindex]:
                    log.info(
                        'Requesting observations of %s @airmass=%4.2f @mjd=%.3f...'
                        % (target.name, secz[i], obstime - 2400000.5))
                    seczreq[sindex] = True
                    target.scheduled = True
                    session.commit()
                    self.addObservation(target, obstime)
                    self.obsTimeMask[obsMask[id]] = 1.0
            #print self.obsTimeBins[obsMask[id]]
            #print

        #print i
        return 0  #targets
示例#13
0
    def computesunmoon(self):
        [ras,decs,dists,toporas,topodecs,xs,ys,zs] = \
         _skysub.accusun(self.jd, self.sidereal.val,self.lat)
        self.SunCoords = celest([ras, decs, self.julian_epoch()])
        self.hasun = ha(self.sidereal.val - self.SunCoords.ra.val)
        [self.altsun,self.azsun,parangsun] = \
         _skysub.altit(self.SunCoords.dec.val,self.hasun.val,\
          self.lat)
        self.ztwilight = _skysub.ztwilight(self.altsun)

        [georam,geodm,geodism,toporam,topodecm,topodistm] = \
         _skysub.accumoon(self.jd,self.lat,self.sidereal.val,
            self.elevsea)
        self.MoonCoords = celest([toporam, topodecm, self.julian_epoch()])
        self.hamoon = ha(self.sidereal.val - self.MoonCoords.ra.val)
        [self.altmoon,self.azmoon,parangmoon] = \
         _skysub.altit(self.MoonCoords.dec.val,self.hamoon.val,\
          self.lat)
        self.sun_moon = _skysub.subtend(self.MoonCoords.ra.val,
                                        self.MoonCoords.dec.val,
                                        self.SunCoords.ra.val,
                                        self.SunCoords.dec.val)  # radians
        self.moonillfrac = 0.5 * (1. - math.cos(self.sun_moon))
        self.sun_moon = self.sun_moon * _skysub.DEG_IN_RADIAN
        self.obj_moon = _skysub.subtend(
            self.MoonCoords.ra.val, self.MoonCoords.dec.val,
            self.CoordsOfDate.ra.val,
            self.CoordsOfDate.dec.val) * _skysub.DEG_IN_RADIAN
        self.lunsky = _skysub.lunskybright(self.sun_moon, self.obj_moon, 0.17,
                                           self.altmoon, self.altit, topodistm)
        [self.barytcor,
         self.baryvcor] = _skysub.helcor(self.jd, self.CoordsOfDate.ra.val,
                                         self.CoordsOfDate.dec.val,
                                         self.hanow.val, self.lat,
                                         self.elevsea)
        self.baryjd = self.jd + self.barytcor / _skysub.SEC_IN_DAY

        # find the jd at the nearest clock-time midnight ...
        localtimestr = self.calstring(stdz=self.stdz, use_dst=self.use_dst)
        x = string.split(localtimestr)
        ymd = x[0] + " " + x[1] + " " + x[2]
        if float(x[3]) >= 12.:
            midnstring = ymd + " 23 59 59.99"
        else:
            midnstring = ymd + " 0 0 0 "
        self.jdmid = time_to_jd(midnstring, stdz = self.stdz, \
         use_dst = self.use_dst)
        self.stmid = ra(_skysub.lst(self.jdmid, self.longit))

        # elevation correction (in degrees) for horizon depression
        horiz = math.sqrt(2. * self.elevhoriz / _skysub.EQUAT_RAD) \
          * _skysub.DEG_IN_RADIAN
        setelev = -1. * (0.83 + horiz)

        hasunset = _skysub.ha_alt(self.SunCoords.dec.val, self.lat, setelev)

        if hasunset > 900.:
            self.jdsunset = 1000.  # never sets
            self.jdsunrise = 1000.
            self.jdcent = 1000.
        elif hasunset < -900.:
            self.jdsunset = -1000.  # never rises
            self.jdsunrise = -1000.
            self.jdcent = -1000.
        else:
            self.jdsunset = self.jdmid + _skysub.adj_time(self.SunCoords.ra.val \
         + hasunset - self.stmid.val)/24.  # initial guess
            # print "entering jdsunset - self.jdsunset = ",self.jdsunset,
            self.jdsunset = _skysub.jd_sun_alt(setelev,self.jdsunset,self.lat, \
         self.longit)
            self.jdsunrise = self.jdmid + _skysub.adj_time(self.SunCoords.ra.val \
         - hasunset - self.stmid.val)/24.  # initial guess
            self.jdsunrise = _skysub.jd_sun_alt(setelev,self.jdsunrise,self.lat, \
         self.longit)

            self.jdcent = (self.jdsunset + self.jdsunrise) / 2.

        hatwilight = _skysub.ha_alt(self.SunCoords.dec.val, self.lat, -18.)

        if hatwilight > 900.:
            self.jdevetwi = 1000.  # never gets dark
            self.jdmorntwi = 1000.
        elif hatwilight < -900.:
            self.jdevetwi = -1000.  # never gets light
            self.jdmorntwi = -1000.

        else:
            self.jdevetwi = self.jdmid + _skysub.adj_time(self.SunCoords.ra.val \
         + hatwilight - self.stmid.val)/24.  # initial guess
            self.jdevetwi = _skysub.jd_sun_alt(-18.,self.jdevetwi,self.lat, \
         self.longit)
            self.jdmorntwi = self.jdmid + _skysub.adj_time(self.SunCoords.ra.val \
         - hatwilight - self.stmid.val)/24.  # initial guess
            self.jdmorntwi = _skysub.jd_sun_alt(-18.,self.jdmorntwi,self.lat, \
         self.longit)

        [ramoonmid,decmoonmid,distmoonmid] = \
           _skysub.lpmoon(self.jdmid,self.lat,self.sidereal.val)
        [minmoonalt, maxmoonalt] = _skysub.min_max_alt(self.lat, decmoonmid)
        # rough (close enough) check to see if moonrise or moonset occur ...
        if maxmoonalt < setelev:
            self.jdmoonrise = -100.  # never rises
            # -1000. is used later to signal non-convergence
            self.jdmoonset = -100.
        if minmoonalt > setelev:
            self.jdmoonrise = 100.  # never sets
            self.jdmoonset = 100.
        else:
            hamoonset = _skysub.ha_alt(decmoonmid, self.lat, setelev)
            tmoonrise = _skysub.adj_time(ramoonmid - hamoonset -
                                         self.stmid.val)
            tmoonset = _skysub.adj_time(ramoonmid + hamoonset - self.stmid.val)
            self.jdmoonrise = self.jdmid + tmoonrise / 24.
            self.jdmoonrise = _skysub.jd_moon_alt(setelev,self.jdmoonrise, \
         self.lat,self.longit,self.elevsea)
            self.jdmoonset = self.jdmid + tmoonset / 24.
            self.jdmoonset = _skysub.jd_moon_alt(setelev,self.jdmoonset,self.lat, \
         self.longit,self.elevsea)

        [self.par_dra,self.par_ddec,self.aber_dra,self.aber_ddec] = \
         _skysub.parellipse(self.jd,self.ra.val,self.dec.val,self.equinox,
           self.lat,self.longit)
示例#14
0
def main(argv):

	'''
	Main function. Reads input parameters, run scheduler and stores results.
	'''

	from optparse import OptionParser
	
	parser = OptionParser()

	parser.add_option("-s",'--south_pt',
                      help='''
Input file. This file contains the ra dec for all the tiles. The format is the 
same as the output of tiler.'''
					  ,type="string")
	parser.add_option("-n",'--north_pt',
                      help='''
Input file. This file contains the ra dec for all the tiles. The format is the 
same as the output of tiler.'''
					  ,type="string")

	parser.add_option("-m",'--meteorology',
                      help='''
Input file. This file contains weather information. Only clouded nights need be 
specified. Format is MJD FLAG, where FLAG is 
0 - Good night. Less than 0.5 mag extinction (may be skipped)
1 - Thin Cirrus. Between 0.5 and 2 mag extinction.
2 - Cloudy. Between 2 and 4 mag extinction.
3 - Closed.'''
					  ,type="string")
	parser.add_option("-v", '--verbose',action="store_true", dest="verbose", default=False,
                      help="Don't print status messages to stdout")
    
	opt,arg = parser.parse_args(argv)
			
	#
	# Reading input files
	#

	_path = os.path.expanduser('~/Develop/SMAPs/coordinatesystemandtiling/')

	sna_file = os.path.join(_path,'smaps_pointT80norte.dat')
	ssa_file = os.path.join(_path,'smaps_pointsulT80.dat')

	iis,jjs,ras,decs,rots = np.loadtxt(sna_file,unpack=True,usecols=(0,1,4,5,6))
	
	iin,jjn,ran,decn,rotn = np.loadtxt(ssa_file,unpack=True,usecols=(0,1,4,5,6))
	
	ii = np.array(np.append(iis,iin+iis.max()+10),dtype=int)
	jj = np.array(np.append(jjs,jjn),dtype=int)
	ra = np.append(ras,ran)
	dec = np.append(decs,decn)
	
	# Store maximum altitude of tiles
	maxAltit = np.array([_skysub.altit(dec[j],0.,sitelat)[0] for j in range(len(ra))])
	
	iciclo = 0
	ncycle = 2
	xcycle = 0
	ntryes = 400
	tryes = 0
	obs = np.array([np.zeros(len(ii))==0,np.zeros(len(ii))==0,np.zeros(len(ii))==0,np.zeros(len(ii))==0])
		
	MJD_dstart = aux.mjd(2014,01,01) # 01/jan/2014

	exptime = [0.003,0.024]
	
	xx = ii.max()+1
	yy = jj.max()+1
	
	map = np.zeros(xx*yy).reshape(yy,xx)
	for i in range(len(ii)):
		map[jj[i]][ii[i]] = 1.0
	xmap = np.array([map,map,map])

	cmap = colors.ListedColormap(['black', 'gray', 'red','white','white'])
	bounds=[0,1,2,3,4]
	norm = colors.BoundaryNorm(bounds, cmap.N)
	
	#plt.plot(ii,jj,'.')
	fig = plt.figure()
	ax = fig.add_subplot(1,1,1) #[fig.add_subplot(2,2,0),fig.add_subplot(2,2,1),fig.add_subplot(2,2,2),fig.add_subplot(2,2,3)]
	ax = fig.add_axes([0,0,1,1])
	ax.axis("off")

	#for i in range(len(obs)):
	ax.imshow(map,aspect='auto',interpolation='nearest',cmap=cmap, norm=norm)
	fig.savefig('xmap_%04i.png'%0)

	nmap = 1

	no_obsTray = np.zeros(len(obs)) == 1
	
	fp = open('surveysim_02.dat','w')

	for MJD in np.arange(MJD_dstart,MJD_dstart+365.*2):
		nightStart = _skysub.jd_sun_alt(sunMaxAlt,2400000.5+MJD+1.0, sitelat, sitelong)
		nightEnd   = _skysub.jd_sun_alt(sunMaxAlt,2400000.5+MJD+1.5, sitelat, sitelong)
	
		ramoon = 0.
		decmoon = 0.
		distmoon = 0.
		rasun = 0.
		decsun = 0.
		
		ramoon,decmoon,distmoon = _skysub.lpmoon(nightStart,sitelat,_skysub.lst(nightStart,sitelong))
		
		ill_frac=0.5*(1.-np.cos(_skysub.subtend(ramoon,decmoon,rasun,decsun)))
		
		stdscr.addstr(7, 0, 'Moon illum: %.3f '%(ill_frac))
		stdscr.clrtoeol()
		
		if ill_frac < 0.95:
			iciclo = 0
		else:
			iciclo = -1
		
		stdscr.addstr(0,0,'Observations start at JD = %12.2f'%nightStart)
		stdscr.addstr(1,0,'Observations end at JD   = %12.2f'%nightEnd)
		xnobs=0
		if iciclo >= 0:

			nobs = len(obs[iciclo][obs[iciclo]])

			try:
				obs[iciclo],xnobs,tnobs,emptyObsSlots = make_obs(nightStart,nightEnd,ra,dec,obs[iciclo],exptime[iciclo],maxAltit)
				
				fp.write('%10.2f %6.3f %4i %4i '%(nightStart,nightEnd-nightStart,xnobs,tnobs))
				xnobs = 0
				tnobs = len(emptyObsSlots)
				
				if len(emptyObsSlots) > 0:
					obs[iciclo+1],xnobs,tnobs,emptyObsSlots = make_obs(nightStart,nightEnd,ra,dec,obs[iciclo+1],exptime[iciclo+1],maxAltit)
				fp.write('%4i %4i\n'%(xnobs,tnobs))
				
			except:
				#stdscr.addstr(8,0,sys.exc_info()[0])
				errinfo = traceback.format_exc(sys.exc_info()[2]).split('\n')
				for ierr in range(len(errinfo)):
					stdscr.addstr(11+ierr,0,errinfo[ierr])
				pass

			if nobs == len(obs[iciclo][obs[iciclo]]):
				no_obsTray[iciclo] = True
			else:
				no_obsTray[iciclo] = False


			if no_obsTray.all():
				if  tryes > ntryes:
					break
				else:
					tryes+=1

		else:
			fp.write('%10.2f %6.3f %4i %4i 0 0\n'%(nightStart,nightEnd-nightStart,0.,len(np.arange(nightStart,nightEnd,exptime[iciclo]))))
			stdscr.addstr(7, 20, ' - No observations this night')
		stdscr.addstr(2, 0, ' Observed %i '%(xnobs))
		xjj = jj[np.bitwise_not(obs[iciclo])]
		xii = ii[np.bitwise_not(obs[iciclo])]
		for i in range(len(xii)):
			xmap[iciclo][xjj[i]][xii[i]] = 2.0
		xjj = jj[np.bitwise_not(obs[iciclo+1])]
		xii = ii[np.bitwise_not(obs[iciclo+1])]
		for i in range(len(xii)):
			xmap[iciclo+1][xjj[i]][xii[i]] = 2.0

		xcycle+=1

		#stdscr.addstr(0, 0, "Moving file: {0}".format(filename))
		#stdscr.addstr(1, 0, "Total progress: [{1:10}] {0}%".format(progress * 10, "#" * progress))

		alldone = np.zeros(ncycle) == 1
		for i in range(ncycle):
			if i == iciclo:
				start = '--> '
			else:
				start = '--- '
			stdscr.addstr(i+3, 0, start+'[Tray: %i] - %4i/%i areas observed'%(i,len(obs[i])-len(obs[i][obs[i]]),len(obs[i])))
			alldone[i] = len(obs[i][obs[i]]) == 0
		stdscr.refresh()

			#print '[Ciclo: %i] - %i/%i areas observed'%(i,len(obs[i])-len(obs[i][obs[i]]),len(obs[i]))
		#for i in range(len(obs)):
		#	ax[i].cla()
		#	ax[i].imshow(xmap[i],aspect='auto',interpolation='nearest',cmap=cmap, norm=norm)
		ax.cla()
		ax.imshow(xmap[0]+xmap[1]-1,aspect='auto',interpolation='nearest',cmap=cmap, norm=norm)
		fig.canvas.draw()
		if not no_obsTray.all():
			fig.savefig('ymap_%04i.png'%nmap)
		nmap += 1
		#plt.plot(ii,jj,'.')
		if alldone.all():
			break

	fp.close()
	print 'Observations started in ',MJD_dstart
	print 'Observations ended in ',MJD
	print 'Survey took %i days'%(MJD-MJD_dstart)
	
	return 0
示例#15
0
	def computesunmoon(self) :
		[ras,decs,dists,toporas,topodecs,xs,ys,zs] = \
			_skysub.accusun(self.jd, self.sidereal.val,self.lat) 
		self.SunCoords = celest([ras,decs,self.julian_epoch()])
		self.hasun = ha(self.sidereal.val - self.SunCoords.ra.val)
		[self.altsun,self.azsun,parangsun] = \
			_skysub.altit(self.SunCoords.dec.val,self.hasun.val,\
				self.lat)
		self.ztwilight = _skysub.ztwilight(self.altsun)

		[georam,geodm,geodism,toporam,topodecm,topodistm] = \
			_skysub.accumoon(self.jd,self.lat,self.sidereal.val,
			   self.elevsea)
		self.MoonCoords = celest([toporam,topodecm,self.julian_epoch()])
		self.hamoon = ha(self.sidereal.val - self.MoonCoords.ra.val)
		[self.altmoon,self.azmoon,parangmoon] = \
			_skysub.altit(self.MoonCoords.dec.val,self.hamoon.val,\
				self.lat)
		self.sun_moon = _skysub.subtend(self.MoonCoords.ra.val,  
			self.MoonCoords.dec.val,self.SunCoords.ra.val,
			self.SunCoords.dec.val) # radians
		self.moonillfrac = 0.5 * (1. - math.cos(self.sun_moon))
		self.sun_moon = self.sun_moon * _skysub.DEG_IN_RADIAN
		self.obj_moon = _skysub.subtend(self.MoonCoords.ra.val,
			self.MoonCoords.dec.val,self.CoordsOfDate.ra.val,
			self.CoordsOfDate.dec.val) * _skysub.DEG_IN_RADIAN
		self.lunsky = _skysub.lunskybright(self.sun_moon,
			self.obj_moon,0.17,self.altmoon,self.altit,topodistm)
		[self.barytcor, self.baryvcor] = _skysub.helcor(self.jd,self.CoordsOfDate.ra.val,
		   self.CoordsOfDate.dec.val,self.hanow.val,self.lat,self.elevsea)
		self.baryjd = self.jd + self.barytcor / _skysub.SEC_IN_DAY

		# find the jd at the nearest clock-time midnight ... 
		localtimestr = self.calstring(stdz = self.stdz, use_dst = self.use_dst)
		x = string.split(localtimestr)
		ymd = x[0] + " " + x[1] + " " + x[2]
		if float(x[3]) >= 12. :
			midnstring = ymd + " 23 59 59.99"
		else :
			midnstring = ymd + " 0 0 0 "
		self.jdmid = time_to_jd(midnstring, stdz = self.stdz, \
			use_dst = self.use_dst)
		self.stmid = ra( _skysub.lst(self.jdmid,self.longit))

		# elevation correction (in degrees) for horizon depression
		horiz = math.sqrt(2. * self.elevhoriz / _skysub.EQUAT_RAD) \
			 * _skysub.DEG_IN_RADIAN
		setelev = -1. * (0.83 + horiz)

		hasunset = _skysub.ha_alt(self.SunCoords.dec.val,self.lat,setelev)
	
		if hasunset > 900.  : 
			self.jdsunset = 1000.  # never sets
			self.jdsunrise = 1000.
			self.jdcent = 1000.
		elif hasunset < -900.  : 
			self.jdsunset = -1000.  # never rises
			self.jdsunrise = -1000.
			self.jdcent = -1000.
		else :
		    self.jdsunset = self.jdmid + _skysub.adj_time(self.SunCoords.ra.val \
			+ hasunset - self.stmid.val)/24.  # initial guess
		    # print "entering jdsunset - self.jdsunset = ",self.jdsunset,
		    self.jdsunset = _skysub.jd_sun_alt(setelev,self.jdsunset,self.lat, \
			self.longit)
		    self.jdsunrise = self.jdmid + _skysub.adj_time(self.SunCoords.ra.val \
			- hasunset - self.stmid.val)/24.  # initial guess
		    self.jdsunrise = _skysub.jd_sun_alt(setelev,self.jdsunrise,self.lat, \
			self.longit)

		    self.jdcent = (self.jdsunset + self.jdsunrise) / 2.

		hatwilight = _skysub.ha_alt(self.SunCoords.dec.val, self.lat, -18.)

		if hatwilight > 900. : 
			self.jdevetwi = 1000.   # never gets dark
			self.jdmorntwi = 1000. 
		elif hatwilight < -900. :  
			self.jdevetwi = -1000.  # never gets light
			self.jdmorntwi = -1000.  
		
		else :
		    self.jdevetwi = self.jdmid + _skysub.adj_time(self.SunCoords.ra.val \
			+ hatwilight - self.stmid.val)/24.  # initial guess
		    self.jdevetwi = _skysub.jd_sun_alt(-18.,self.jdevetwi,self.lat, \
			self.longit)
		    self.jdmorntwi = self.jdmid + _skysub.adj_time(self.SunCoords.ra.val \
			- hatwilight - self.stmid.val)/24.  # initial guess
		    self.jdmorntwi = _skysub.jd_sun_alt(-18.,self.jdmorntwi,self.lat, \
			self.longit)

		[ramoonmid,decmoonmid,distmoonmid] = \
		   _skysub.lpmoon(self.jdmid,self.lat,self.sidereal.val)
		[minmoonalt,maxmoonalt] = _skysub.min_max_alt(self.lat,decmoonmid)
		# rough (close enough) check to see if moonrise or moonset occur ... 
		if maxmoonalt < setelev :
			self.jdmoonrise = -100.  # never rises
			# -1000. is used later to signal non-convergence
			self.jdmoonset = -100.
		if minmoonalt > setelev :
			self.jdmoonrise = 100. # never sets
			self.jdmoonset = 100.
		else :
		    hamoonset = _skysub.ha_alt(decmoonmid,self.lat,setelev)
		    tmoonrise = _skysub.adj_time(ramoonmid - hamoonset - self.stmid.val)
		    tmoonset = _skysub.adj_time(ramoonmid + hamoonset - self.stmid.val)
		    self.jdmoonrise = self.jdmid + tmoonrise / 24.
		    self.jdmoonrise = _skysub.jd_moon_alt(setelev,self.jdmoonrise, \
			self.lat,self.longit,self.elevsea)
		    self.jdmoonset = self.jdmid + tmoonset / 24.
		    self.jdmoonset = _skysub.jd_moon_alt(setelev,self.jdmoonset,self.lat, \
			self.longit,self.elevsea)

		[self.par_dra,self.par_ddec,self.aber_dra,self.aber_ddec] = \
			_skysub.parellipse(self.jd,self.ra.val,self.dec.val,self.equinox,
					self.lat,self.longit)
示例#16
0
def make_obs(T0,T1,RA,DEC,mask,texp,MaxAltit,obsTimes=[]):

	#obsmask = np.array(mask)
	
	i = 0
	
	lst_start = _skysub.lst(T0,sitelong)
	lst_end = _skysub.lst(T1,sitelong)
	ra_mask = []
	
	if lst_start < lst_end:
		ra_mask = np.bitwise_and(RA > lst_start*360./24., RA < lst_end*360./24.)
		stdscr.addstr(8,0,'[%5i] >> lst_start < lst_end <<'%(len(ra_mask[ra_mask])))
		stdscr.addstr(9,0,'                                 ')

	else:
		obsmask1 = RA > lst_start*360./24.
		obsmask2 = np.bitwise_and(RA > 0.,RA < lst_end*360./24.)
		ra_mask = np.bitwise_or(obsmask1,obsmask2)
		stdscr.addstr(8,0,'                                 ')
		stdscr.addstr(9,0,'[%5i] << lst_start > lst_end >>'%(len(ra_mask[ra_mask])))

	stdscr.refresh()
	obsmask = np.bitwise_and(mask,ra_mask)
	xindex = np.arange(len(RA))
	#stdscr.addstr(5,0,'%i %i'%(len(index[obsmask]),len(index[ra_mask])))
	stdscr.addstr(5,0,'Initial size of array %i'%(len(xindex)))
	ondex = []
	index = list(np.array(xindex)[obsmask])

	if len(obsTimes) == 0:
		_obsTimes = np.arange(T0,T1,texp)
	else:
		_obsTimes = obsTimes
	obsSlot = np.zeros_like(_obsTimes) == 1

	if len(index)>len(xindex[ra_mask]):
		stdscr.addstr(6,0,'[WARNING] More tiles available than it is possible!')
		stdscr.refresh()
		return mask,0,len(np.arange(T0,T1,texp)),_obsTimes

	if len(index) < 1:
		stdscr.addstr(6,0,'Nothing to observe...                                               ')
		stdscr.refresh()
		return mask,0,len(np.arange(T0,T1,texp)),_obsTimes
	__strlen = len('Running size of array %4i'%(len(index)))
	stdscr.addstr(6,0,'Running size of array %4i'%(len(index)))
	stdscr.refresh()
	#obsmask[ra_mask] = True
	#return obsmask,i
	#fp = open('queue_%05.0f.txt'%(T0-2400000.5),'w')
	for line in range(10):
		stdscr.addstr(10+line,0,'                                                                 ')

	line = 0

	for itr,time in enumerate(_obsTimes):
		
		lst = _skysub.lst(time,sitelong)*360./24.
	
		#lst = _skysub.lst(time,sitelong) #*360./24.
		ha = (lst - RA)*24./360.
		alt = np.array([_skysub.altit(DEC[j],ha[j],sitelat)[0] for j in index])
		if len(alt) == 0:
			stdscr.addstr(6,0,'Nothing to observe...                              ')
			stdscr.refresh()
		else:
			stg = alt.argmax()
			i+=1
			#stdscr.addstr(8,0,'%i %i %i'%(obsmask[index[stg]],index[stg],stg))
			if alt[stg] > MaxAltit[index[stg]]*0.6:
				ondex.append(index[stg])
				index.pop(stg)
				obsSlot[itr] = True
			else:
				stdscr.addstr(10+line,0,'Object too low. Alt = %7.2f, Max Alt = %7.2f...                   '%(alt[stg],MaxAltit[index[stg]]))
				if line < 9:
					line+=1
				stdscr.refresh()
		#stg = ha.argmin()
		
		#fp.write('tile%05i %f %f\n'%(	index[stg],
		#								RA[index[stg]],
		#								DEC[index[stg]]))
										

		#
		#xtime.sleep(1.0)
		
	#fp.close()
	obsmask = np.array(mask)
	for idx in ondex:
		if obsmask[idx] == False:
			stdscr.addstr(10,0,'[WARINING] - Tile repeated!')
			stdscr.refresh()
		obsmask[idx] = False
	#stdscr.addstr(8,0,'%i'%(len(xindex[mask])-len(xindex[obsmask])))
	stdscr.refresh()
	#print i
	return obsmask,len(ondex),len(_obsTimes),_obsTimes[obsSlot]
示例#17
0
文件: mkqueue.py 项目: tribeiro/SMAPS
	def selectStandardTargets(self,flag,nstars=3,nairmass=3):
		'''
		Based on configuration parameters, select 'nstars' standard stars to run scheduler on a specified Julian Day. Ideally you 
		will select standard stars before your science targets so not to have a full queue. Usually standard stars are observed 
		more than once a night at different airmasses. The user can control this parameter with nairmass and the script will try
		to take care of the rest. 
		'''

		session = Session()
		
		# query project information
		projQuery = session.query(Projects).filter(Projects.flag == flag)
		
		totobstime = 0.
		
		# Calculate total observation time
		
		for block in projQuery:
			totobstime += block.exptime
		totobstime /= 86400.0
		# First of all, standard stars can be observed multiple times in sucessive nights. I will mark all
		# stars as unscheduled.
		
		targets = session.query(Targets).filter(Targets.scheduled == True).filter(Targets.type == flag)
		for target in targets:
			target.scheduled = False
			session.commit()
		
		# [To be done] Reject objects that are close to the moon
		# [To be done] Apply all sorts of rejections

		# Selecting standard stars is not only searching for the higher in that time but select stars than can be observed at 3
		# or more (nairmass) different airmasses. It is also important to select stars with different colors (but this will be
		# taken care in the future).

		if nairmass*nstars > len(self.obsTimeBins):
			self.log.warning('Requesting more stars/observations than it will be possible to schedule. Decreasing number of requests to fit in the night.')
			nstars = len(self.obsTimeBins)/nairmass


		# Build a grid of desired times for higher airmass observation of each standard star.
		
		stdObsTimeBin = np.arange(10,len(self.obsTimeBins)-10,(len(self.obsTimeBins)-10)/nstars)
		obsStandars = np.zeros(nstars)
		print stdObsTimeBin
		
		# selecting the closest bin without observation

		stdObsTimeBin,status = self.findSuitableTimeBin(stdObsTimeBin)
		
		if status != 0:
			raise Exception('Could not find suitable time to start observations! Try cleaning queue.')
			
		print stdObsTimeBin
		
		site = Site()

		calclst = lambda time: np.sum(np.array([float(tt) / 60.**i for i,tt in enumerate(str(site._getEphem(datetimeFromJD(time)).sidereal_time()).split(':'))]))
		nightlst = np.array([calclst(obstime) for obstime in self.obsTimeBins])


		for i,tbin in enumerate(stdObsTimeBin):
		
			# selecting the closest bin without observation
			closestcleanbin = tbin
			while self.obsTimeMask[closestcleanbin] > 0.0:
				closestcleanbin += 1
			if i+1 < len(stdObsTimeBin):
				if closestcleanbin > stdObsTimeBin[i+1]:
					raise Exception('Could not find suitable place to start observations of standard star. Try cleaning queue.')
			
			time = self.obsTimeBins[closestcleanbin]

			# 1 - Select objects from database that where not scheduled yet (standard stars may be repited)
			#     that fits our observing night

			#targetSched = False

			# Will try until a good match is obtained
			#while( not targetSched ):
			targets = session.query(Targets).filter(Targets.scheduled == 0).filter(Targets.type == flag)
			if len(targets[:]) > 0:

				#ephem = site._getEphem(datetimeFromJD(time))
				
				lst = calclst(time) #np.sum(np.array([float(tt) / 60.**i for i,tt in enumerate(str(ephem.sidereal_time()).split(':'))]))
				sitelat = np.sum(np.array([float(tt) / 60.**i for i,tt in enumerate(str(site['latitude']).split(':'))]))
				alt = np.array([_skysub.altit(target.targetDec,lst - target.targetRa,sitelat)[0] for target in targets])
				
				stg = alt.argmax()

				print('Selecting %s'%(targets[stg]))
				
				# Marking target as schedule
				tst = session.query(Targets).filter(Targets.id == targets[stg].id)
				
				# Build airmass table for object
				objsecz = np.array([_skysub.true_airmass(_skysub.secant_z(_skysub.altit(targets[stg].targetDec,nlst - targets[stg].targetRa,sitelat)[0])) for nlst in nightlst])
				# Build desired airmass table
				#obsairmass = np.linspace(_skysub.true_airmass(_skysub.secant_z(alt[stg])),projQuery[0].maxairmass,nairmass)
				obsairmass = np.logspace(np.log10(np.min(objsecz[objsecz > 0])),np.log10(projQuery[0].maxairmass),nairmass)
				np.savetxt('airmass_%04i.dat'%(stg),X=zip(self.obsTimeBins,objsecz))
				# Build mask with scheduled airmasses
				#mask = np.zeros(len(objsecz),dtype=bool) == 1
				pltobstime,pltobsairmass = np.array([]),np.array([])
				# Try scheduling observations on all airmasses
				for airmass in obsairmass:
				
					# Get times where the object is close to the desired airmass and there are no observations scheduled
					timeobsmask = np.bitwise_and(self.obsTimeMask < 1.0,np.abs(objsecz - airmass) < self.tolairmass)
					# Check that there are times available
					if not timeobsmask.any():
						#raise Exception('No time available for scheduling observations of standard star %s at airmass %.3f'%(targets[stg],airmass))
						self.log.warning('No time available for scheduling observations of standard star %s at airmass %.3f'%(targets[stg],airmass))
					# Start trying to schedule observations
					indexes = np.arange(len(self.obsTimeMask))[timeobsmask] #np.bitwise_and(self.obsTimeMask, timeobsmask)
					
					obsSched = False


					
					for index in indexes:
						print('[%.3f] - Time bin available for observation of standard star at airmass %.3f'%(self.obsTimeBins[index], airmass))
						print '- Require %i extra time bins'%(totobstime/self.tbin)
						if (self.obsTimeMask[index:index+totobstime/self.tbin] < 1.0).all():
							print 'Observation fit in this block.'
							self.obsTimeMask[index:index+totobstime/self.tbin] = 1.0
							self.log.info('Requesting observations of %s @airmass=%4.2f @mjd=%.3f...'%(target.name,airmass,self.obsTimeBins[index]-2400000.5))
							
							pltobstime = np.append(pltobstime,self.obsTimeBins[index:index+totobstime/self.tbin])
							pltobsairmass = np.append(pltobsairmass, objsecz[index:index+totobstime/self.tbin])
							

							#for nblock,ii in enumerate(range(index,int(index+totobstime/self.tbin),1)):
							self.addObservation(targets[stg],self.obsTimeBins[index],projQuery)
							break
					np.savetxt('obsairmass_%04i.dat'%stg,X = zip(pltobstime,pltobsairmass))

						#self.obsTimeMask[index] = 1.0
						#for iobsbins in range(index+1,index+int(totobstime/self.tbin)):
							#print '[%i] - require extra time bin'%(iobsbins)
							#if self.obsTimeMask[iobsbins] < 1.0:
							#	self.obsTimeMask[iobsbins] = 1.0
							#else:
							#	raise Exception('Time bin [%i/%i] not available for observation of standard star at airmass %.3f'%(iobsbins,len(self.obsTimeMask),airmass))
						#else:
							#raise Exception('Time bin not available for observation of standard star at airmass %.3f'%(airmass))

				for t in tst:
					t.scheduled = True
					session.commit()
					obsStandars[i] = t.id
			else:
				self.log.warning('No suitable standard star for jd:%.3f in database...'%(time))
				return 0

		return 0
		
		if len(obsStandars[obsStandars >= 0]) < nstars:
			self.log.warning('Could not find %i suitable standard stars in catalog. Only %i where found.'%(nstars,len(obsStandars[obsStandars >= 0])))

		obsStandars = np.zeros(len(self.obsTimeBins))-1 # first selection of observable standards
		
		for tbin,time in enumerate(self.obsTimeBins):

			if self.obsTimeMask[tbin] < 1.0:
				# 1 - Select objects from database that where not scheduled yet (standard stars may be repited)
				#     that fits our observing night
				targets = session.query(Targets).filter(Targets.scheduled == 0).filter(Targets.type == flag)
				
				if len(targets[:]) > 0:

					ephem = site._getEphem(datetimeFromJD(time))
					
					lst = np.sum(np.array([float(tt) / 60.**i for i,tt in enumerate(str(ephem.sidereal_time()).split(':'))]))
					sitelat = np.sum(np.array([float(tt) / 60.**i for i,tt in enumerate(str(site['latitude']).split(':'))]))
					secz = np.array([_skysub.secant_z(_skysub.altit(target.targetDec,lst - target.targetRa,sitelat)[0]) for target in targets])
					
					stg = secz.argmax()

					self.log.info('Selecting %s'%(targets[stg]))
					
					# Marking target as schedule
					tst = session.query(Targets).filter(Targets.id == targets[stg].id)

					for t in tst:
						t.scheduled = True
						session.commit()
						obsStandars[tbin] = t.id
				else:
					print('No suitable target for jd:%.3f in database...'%(time))
					break

			else:
				self.log.info('Bin already filled up with observations. Skipping...')

		if len(obsStandars[obsStandars >= 0]) < nstars:
			self.log.warning('Could not find %i suitable standard stars in catalog. Only %i where found.'%(nstars,len(obsStandars[obsStandars >= 0])))
		#
		# Unmarking potential targets as scheduled
		#
		for id in obsStandars[obsStandars >= 0]:
			target = session.query(Targets).filter(Targets.id == id)
			for t in target:
				t.scheduled = False
				session.commit()
				
			tbin+=1
		#
		# Preparing a grid of altitudes for each target for each observing window
		#
		amGrid = np.zeros(len(obsStandars)*len(obsStandars)).reshape(len(obsStandars),len(obsStandars))

		for i in np.arange(len(obsStandars))[obsStandars >= 0]:
			target = session.query(Targets).filter(Targets.id == obsStandars[i])[0]
			for j in range(len(obsStandars)):
				lst = _skysub.lst(self.obsTimeBins[j],self.sitelong)
				amGrid[i][j] = _skysub.true_airmass(_skysub.secant_z(_skysub.altit(target.targetDec,lst - target.targetRa,self.sitelat)[0]))
				if amGrid[i][j] < 0:
					amGrid [i][j] = 99.
		#
		# Build a grid mask that specifies the position in time each target should be observed. This means that, when
		# selecting a single target we ocuppy more than one, non consecutive, position in the night. This grid shows where are these
		# positions.
		#
		obsMask = np.zeros(len(obsStandars)*len(obsStandars),dtype=np.bool).reshape(len(obsStandars),len(obsStandars))

		for i in np.arange(len(obsStandars))[obsStandars >= 0]:
			amObs = np.linspace(amGrid[i].min(),self.stdMaxAirmass,nairmass) # requested aimasses
			dam = np.mean(np.abs(amGrid[i][amGrid[i]<self.stdMaxAirmass][1:] - amGrid[i][amGrid[i]<self.stdMaxAirmass][:-1])) # how much airmass changes in average
			for j,am in enumerate(amObs):
				# Mark positions where target is at	specified airmass
				if j == 0:
					obsMask[i] = np.bitwise_or(obsMask[i],amGrid[i] == am)
				else:
					obsMask[i] = np.bitwise_or(obsMask[i],np.bitwise_and(amGrid[i]>am-dam,amGrid[i]<am+dam))

			#print amGrid[i][np.where(obsMask[i])]
		#
		# Now it is time to actually select the targets. It will start with the first target and then try the others
		# until it find enough standard stars, as specified by the user.
		#
		# Para cada bin em tempo, varro o bin em massa de ar por coisas observaveis. Se acho um, vejo se posso agendar
		# os outros bins. Se sim, marco o alvo para observacao, se nao, passo para o proximo. Repito ate completar a
		# lista de alvos
		#

		obsMaskTimeGrid = np.zeros(len(obsStandars),dtype=np.bool)
		nrequests = 0
		reqId = np.zeros(nstars,dtype=np.int)-1
		for tbin,time in enumerate(self.obsTimeBins[:-1]):
			# Evaluates if time slots are all available. If yes, mark orbservation and ocuppy slots.
			if ( (not obsMaskTimeGrid[obsMask[tbin]].any()) and (len(amGrid[tbin][obsMask[tbin]])>=nairmass) ):
				obsMaskTimeGrid = np.bitwise_or(obsMaskTimeGrid,obsMask[tbin])
				reqId[nrequests] = tbin
				nrequests += 1
			if nrequests >= nstars:
				break

		# Finally, requesting observations

		for id in reqId[reqId >= 0]:
			target = session.query(Targets).filter(Targets.id == obsStandars[id])[0]
			secz = amGrid[id][obsMask[id]]
			seczreq = np.zeros(nairmass,dtype=np.bool)
			amObs = np.linspace(amGrid[id].min(),self.stdMaxAirmass,nairmass) # requested aimasses
			for i,obstime in enumerate(self.obsTimeBins[obsMask[id]]):
				sindex = np.abs(amObs-secz[i]).argmin()
				if not seczreq[sindex]:
					self.log.info('Requesting observations of %s @airmass=%4.2f @mjd=%.3f...'%(target.name,secz[i],obstime-2400000.5))
					seczreq[sindex] = True
					target.scheduled = True
					session.commit()
					self.addObservation(target,obstime)
					self.obsTimeMask[obsMask[id]] = 1.0
			#print self.obsTimeBins[obsMask[id]]
			#print

		#print i
		return 0 #targets