def spaun(dimensions): """ Builds the Spaun network. See [1]_ for more details. Parameters ---------- dimensions : int Number of dimensions for vector values Returns ------- net : `nengo.Network` benchmark network References ---------- .. [1] Chris Eliasmith, Terrence C. Stewart, Xuan Choo, Trevor Bekolay, Travis DeWolf, Yichuan Tang, and Daniel Rasmussen (2012). A large-scale model of the functioning brain. Science, 338:1202-1205. Notes ----- This network needs to be installed via .. code-block:: bash pip install git+https://github.com/drasmuss/spaun2.0.git """ # pylint: disable=import-outside-toplevel from _spaun.configurator import cfg from _spaun.vocabulator import vocab from _spaun.experimenter import experiment from _spaun.modules.stim import stim_data from _spaun.modules.vision import vis_data from _spaun.modules.motor import mtr_data from _spaun.spaun_main import Spaun vocab.sp_dim = dimensions cfg.mtr_arm_type = None cfg.set_seed(1) experiment.initialize( "A", stim_data.get_image_ind, stim_data.get_image_label, cfg.mtr_est_digit_response_time, "", cfg.rng, ) vocab.initialize(stim_data.stim_SP_labels, experiment.num_learn_actions, cfg.rng) vocab.initialize_mtr_vocab(mtr_data.dimensions, mtr_data.sps) vocab.initialize_vis_vocab(vis_data.dimensions, vis_data.sps) return Spaun()
def spaun(dimensions): """ Builds the Spaun network from [1]_ Parameters ---------- dimensions : int Number of dimensions for vector values Returns ------- net : `nengo.Network` benchmark network References ---------- .. [1] Chris Eliasmith, Terrence C. Stewart, Xuan Choo, Trevor Bekolay, Travis DeWolf, Yichuan Tang, and Daniel Rasmussen (2012). A large-scale model of the functioning brain. Science, 338:1202-1205. Notes ----- This network needs to be installed via .. code-block:: bash pip install git+https://github.com/drasmuss/spaun2.0.git """ from _spaun.configurator import cfg from _spaun.vocabulator import vocab from _spaun.experimenter import experiment from _spaun.modules.stim import stim_data from _spaun.modules.vision import vis_data from _spaun.modules.motor import mtr_data from _spaun.spaun_main import Spaun vocab.sp_dim = dimensions cfg.mtr_arm_type = None cfg.set_seed(1) experiment.initialize( "A", stim_data.get_image_ind, stim_data.get_image_label, cfg.mtr_est_digit_response_time, "", cfg.rng) vocab.initialize( stim_data.stim_SP_labels, experiment.num_learn_actions, cfg.rng) vocab.initialize_mtr_vocab(mtr_data.dimensions, mtr_data.sps) vocab.initialize_vis_vocab(vis_data.dimensions, vis_data.sps) return Spaun()
def build_spaun(dimensions): vocab.sp_dim = dimensions cfg.mtr_arm_type = None cfg.set_seed(1) experiment.initialize('A', vis_data.get_image_ind, vis_data.get_image_label, cfg.mtr_est_digit_response_time, cfg.rng) vocab.initialize(experiment.num_learn_actions, cfg.rng) vocab.initialize_mtr_vocab(mtr_data.dimensions, mtr_data.sps) vocab.initialize_vis_vocab(vis_data.dimensions, vis_data.sps) with Spaun() as net: nengo_dl.configure_settings( trainable=False, simplifications=[ graph_optimizer.remove_constant_copies, graph_optimizer.remove_unmodified_resets, # graph_optimizer.remove_zero_incs, graph_optimizer.remove_identity_muls ]) return net
cfg.backend = 'spinn' print "BACKEND: %s" % cfg.backend.upper() # ----- Batch runs ----- for n in range(args.n): print("\n======================== RUN %i OF %i ========================" % (n + 1, args.n)) # ----- Seeeeeeeed ----- if args.seed < 0: seed = int(time.time()) else: seed = args.seed cfg.set_seed(seed) print "MODEL SEED: %i" % cfg.seed # ----- Model Configurations ----- vocab.sp_dim = args.d cfg.data_dir = args.data_dir # Parse --config options if args.config is not None: print "USING CONFIGURATION OPTIONS: " for cfg_options in args.config: cfg_opts = cfg_options.split('=') cfg_param = cfg_opts[0] cfg_value = cfg_opts[1] if hasattr(cfg, cfg_param): print " * cfg: " + str(cfg_options)
def create_spaun_model(n, args, max_probe_time): print("\n======================== RUN %i OF %i ========================" % (n + 1, args.n)) # ----- Seeeeeeeed ----- if args.seed < 0: seed = int(time.time()) else: seed = args.seed cfg.set_seed(seed) print "MODEL SEED: %i" % cfg.seed # ----- Model Configurations ----- vocab.sp_dim = args.d cfg.data_dir = args.data_dir # Parse --config options if args.config is not None: print "USING CONFIGURATION OPTIONS: " for cfg_options in args.config: cfg_opts = cfg_options.split('=') cfg_param = cfg_opts[0] cfg_value = cfg_opts[1] if hasattr(cfg, cfg_param): print " * cfg: " + str(cfg_options) setattr(cfg, cfg_param, eval(cfg_value)) elif hasattr(experiment, cfg_param): print " * experiment: " + str(cfg_options) setattr(experiment, cfg_param, eval(cfg_value)) elif hasattr(vocab, cfg_param): print " * vocab: " + str(cfg_options) setattr(vocab, cfg_param, eval(cfg_value)) # ----- Check if data folder exists ----- if not (os.path.isdir(cfg.data_dir) and os.path.exists(cfg.data_dir)): raise RuntimeError('Data directory "%s"' % (cfg.data_dir) + ' does not exist. Please ensure the correct path' + ' has been specified.') # ----- Enable debug logging ----- if args.debug: nengo.log('debug') # ----- Experiment and vocabulary initialization ----- experiment.initialize(args.s, vis_data.get_image_ind, vis_data.get_image_label, cfg.mtr_est_digit_response_time, cfg.rng) vocab.initialize(experiment.num_learn_actions, cfg.rng) vocab.initialize_mtr_vocab(mtr_data.dimensions, mtr_data.sps) vocab.initialize_vis_vocab(vis_data.dimensions, vis_data.sps) # ----- Configure output log files ----- mpi_savename = None mpi_saveext = None probe_cfg = None probe_anim_cfg = None anim_probe_data_filename = None if cfg.use_mpi: sys.path.append('C:\\Users\\xchoo\\GitHub\\nengo_mpi') mpi_save = args.mpi_save.split('.') mpi_savename = '.'.join(mpi_save[:-1]) mpi_saveext = mpi_save[-1] cfg.probe_data_filename = get_probe_data_filename(mpi_savename, suffix=args.tag) else: cfg.probe_data_filename = get_probe_data_filename(suffix=args.tag) # ----- Initalize looger and write header data ----- logger.initialize(cfg.data_dir, cfg.probe_data_filename[:-4] + '_log.txt') cfg.write_header() experiment.write_header() vocab.write_header() logger.flush() # ----- Raw stimulus seq ----- print "RAW STIM SEQ: %s" % (str(experiment.raw_seq_str)) # ----- Spaun proper ----- model = Spaun() # ----- Display stimulus seq ----- print "PROCESSED RAW STIM SEQ: %s" % (str(experiment.raw_seq_list)) print "STIMULUS SEQ: %s" % (str(experiment.stim_seq_list)) # ----- Calculate runtime ----- # Note: Moved up here so that we have data to disable probes if necessary runtime = args.t if args.t > 0 else experiment.get_est_simtime() # ----- Set up probes ----- make_probes = not args.noprobes if runtime > max_probe_time and make_probes: print(">>> !!! WARNING !!! EST RUNTIME > %0.2fs - DISABLING PROBES" % max_probe_time) make_probes = False if make_probes: print "PROBE FILENAME: %s" % cfg.probe_data_filename probe_cfg = default_probe_config(model, vocab, cfg.sim_dt, cfg.data_dir, cfg.probe_data_filename) # ----- Set up animation probes ----- if args.showanim or args.showiofig or args.probeio: anim_probe_data_filename = cfg.probe_data_filename[:-4] + '_anim.npz' print "ANIM PROBE FILENAME: %s" % anim_probe_data_filename probe_anim_cfg = default_anim_config(model, vocab, cfg.sim_dt, cfg.data_dir, anim_probe_data_filename) # ----- Neuron count debug ----- print "MODEL N_NEURONS: %i" % (get_total_n_neurons(model)) if hasattr(model, 'vis'): print "- vis n_neurons: %i" % (get_total_n_neurons(model.vis)) if hasattr(model, 'ps'): print "- ps n_neurons: %i" % (get_total_n_neurons(model.ps)) if hasattr(model, 'bg'): print "- bg n_neurons: %i" % (get_total_n_neurons(model.bg)) if hasattr(model, 'thal'): print "- thal n_neurons: %i" % (get_total_n_neurons(model.thal)) if hasattr(model, 'enc'): print "- enc n_neurons: %i" % (get_total_n_neurons(model.enc)) if hasattr(model, 'mem'): print "- mem n_neurons: %i" % (get_total_n_neurons(model.mem)) if hasattr(model, 'trfm'): print "- trfm n_neurons: %i" % (get_total_n_neurons(model.trfm)) if hasattr(model, 'dec'): print "- dec n_neurons: %i" % (get_total_n_neurons(model.dec)) if hasattr(model, 'mtr'): print "- mtr n_neurons: %i" % (get_total_n_neurons(model.mtr)) # ----- Connections count debug ----- print "MODEL N_CONNECTIONS: %i" % (len(model.all_connections)) return (model, mpi_savename, mpi_saveext, runtime, make_probes, probe_cfg, probe_anim_cfg, anim_probe_data_filename)
cfg.backend = 'spinn' print "BACKEND: %s" % cfg.backend.upper() # ----- Batch runs ----- for n in range(args.n): print ("\n======================== RUN %i OF %i ========================" % (n + 1, args.n)) # ----- Seeeeeeeed ----- if args.seed < 0: seed = int(time.time()) else: seed = args.seed cfg.set_seed(seed) print "MODEL SEED: %i" % cfg.seed # ----- Model Configurations ----- vocab.sp_dim = args.d cfg.data_dir = args.data_dir # Parse --config options if args.config is not None: print "USING CONFIGURATION OPTIONS: " for cfg_options in args.config: cfg_opts = cfg_options.split('=') cfg_param = cfg_opts[0] cfg_value = cfg_opts[1] if hasattr(cfg, cfg_param): print " * cfg: " + str(cfg_options)