示例#1
0
    def test_learning_based_on_accuracy_based_stopping(self):

        example = 'first_grid'
        mdp = load_automaton_from_file(f'../DotModels/MDPs/{example}.dot', automaton_type='mdp')

        min_rounds = 10
        max_rounds = 500

        from aalpy.automata import StochasticMealyMachine
        from aalpy.utils import model_check_experiment, get_properties_file, \
            get_correct_prop_values
        from aalpy.automata.StochasticMealyMachine import smm_to_mdp_conversion

        aalpy.paths.path_to_prism = "C:/Program Files/prism-4.6/bin/prism.bat"
        aalpy.paths.path_to_properties = "../Benchmarking/prism_eval_props/"

        stopping_based_on_prop = (get_properties_file(example), get_correct_prop_values(example), 0.02)

        input_alphabet = mdp.get_input_alphabet()

        automaton_type = ['mdp', 'smm']
        similarity_strategy = ['classic', 'normal', 'chi2']
        cex_processing = [None, 'longest_prefix']
        samples_cex_strategy = [None, 'bfs', 'random:200:0.3']

        for aut_type in automaton_type:
            for strategy in similarity_strategy:
                for cex in cex_processing:
                    for sample_cex in samples_cex_strategy:

                        sul = StochasticMealySUL(mdp) if aut_type == 'smm' else MdpSUL(mdp)

                        eq_oracle = UnseenOutputRandomWalkEqOracle(input_alphabet, sul=sul, num_steps=200,
                                                                   reset_prob=0.25,
                                                                   reset_after_cex=True)

                        learned_model = run_stochastic_Lstar(input_alphabet=input_alphabet, eq_oracle=eq_oracle,
                                                             sul=sul, n_c=20,
                                                             n_resample=1000, min_rounds=min_rounds,
                                                             max_rounds=max_rounds,
                                                             automaton_type=aut_type, strategy=strategy,
                                                             cex_processing=cex,
                                                             samples_cex_strategy=sample_cex, target_unambiguity=0.99,
                                                             property_based_stopping=stopping_based_on_prop,
                                                             print_level=0)

                        if isinstance(learned_model, StochasticMealyMachine):
                            mdp = smm_to_mdp_conversion(learned_model)
                        else:
                            mdp = learned_model

                        results, diff = model_check_experiment(get_properties_file(example),
                                                               get_correct_prop_values(example), mdp)

                        for d in diff.values():
                            if d > stopping_based_on_prop[2]:
                                assert False

        assert True
示例#2
0
文件: Examples.py 项目: DES-Lab/AALpy
def learn_stochastic_system_and_do_model_checking(example, automaton_type='smm', n_c=20, n_resample=1000, min_rounds=10,
                                                  max_rounds=500, strategy='normal', cex_processing='longest_prefix',
                                                  stopping_based_on_prop=None, samples_cex_strategy=None):
    import aalpy.paths
    from aalpy.automata import StochasticMealyMachine
    from aalpy.utils import model_check_experiment, get_properties_file, get_correct_prop_values
    from aalpy.automata.StochasticMealyMachine import smm_to_mdp_conversion

    aalpy.paths.path_to_prism = "C:/Program Files/prism-4.6/bin/prism.bat"
    aalpy.paths.path_to_properties = "Benchmarking/prism_eval_props/"

    learned_model = benchmark_stochastic_example(example, automaton_type, n_c, n_resample, min_rounds, max_rounds,
                                                 strategy,
                                                 cex_processing, stopping_based_on_prop, samples_cex_strategy)

    if isinstance(learned_model, StochasticMealyMachine):
        mdp = smm_to_mdp_conversion(learned_model)
    else:
        mdp = learned_model

    values, diff = model_check_experiment(get_properties_file(example), get_correct_prop_values(example), mdp)

    print('Value for each property:', [round(d * 100, 2) for d in values.values()])
    print('Error for each property:', [round(d * 100, 2) for d in diff.values()])
示例#3
0
                        automaton_type='smm',
                        n_c=n_c,
                        n_resample=n_resample,
                        min_rounds=min_rounds,
                        strategy=strat,
                        max_rounds=max_rounds,
                        return_data=True,
                        samples_cex_strategy=cex_stat,
                        print_level=1,
                        cex_processing=cex_proc,
                        property_based_stopping=stopping_data)

                    smm_2_mdp = smm_to_mdp_conversion(learned_smm)

                    mdp_results, mdp_err = model_check_experiment(
                        get_properties_file(exp_name),
                        get_correct_prop_values(exp_name), learned_mdp)
                    smm_results, smm_err = model_check_experiment(
                        get_properties_file(exp_name),
                        get_correct_prop_values(exp_name), smm_2_mdp)

                    properties_string_header = ",".join(
                        [f'{key}_val,{key}_err' for key in mdp_results.keys()])

                    property_string_mdp = ",".join([
                        f'{str(mdp_results[p])},{str(mdp_err[p])}'
                        for p in mdp_results.keys()
                    ])
                    property_string_smm = ",".join([
                        f'{str(smm_results[p])},{str(smm_err[p])}'
                        for p in smm_results.keys()