示例#1
0
class SynLikelihoodTests(unittest.TestCase):
    def setUp(self):
        self.mu = Uniform([[-5.0], [5.0]], name='mu')
        self.sigma = Uniform([[5.0], [10.0]], name='sigma')
        self.model = Normal([self.mu, self.sigma])
        self.stat_calc = Identity(degree=2, cross=False)
        self.likfun = SynLikelihood(self.stat_calc)
        # create fake simulated data
        self.mu._fixed_values = [1.1]
        self.sigma._fixed_values = [1.0]
        self.y_sim = self.model.forward_simulate(self.model.get_input_values(), 100, rng=np.random.RandomState(1))

    def test_likelihood(self):
        # Checks whether wrong input type produces error message
        self.assertRaises(TypeError, self.likfun.loglikelihood, 3.4, [2, 1])
        self.assertRaises(TypeError, self.likfun.loglikelihood, [2, 4], 3.4)

        # create observed data
        y_obs = [1.8]
        # calculate the statistics of the observed data
        comp_likelihood = self.likfun.loglikelihood(y_obs, self.y_sim)
        expected_likelihood = 0.20963610211945238
        # This checks whether it computes a correct value and dimension is right
        self.assertAlmostEqual(comp_likelihood, np.log(expected_likelihood))

    def test_likelihood_multiple_observations(self):
        y_obs = [1.8, 0.9]
        comp_likelihood = self.likfun.loglikelihood(y_obs, self.y_sim)
        print(comp_likelihood)
        expected_likelihood = 0.04457899184856649
        # This checks whether it computes a correct value and dimension is right
        self.assertAlmostEqual(comp_likelihood, np.log(expected_likelihood))
示例#2
0
 def setUp(self):
     self.mu = Uniform([[-5.0], [5.0]], name='mu')
     self.sigma = Uniform([[5.0], [10.0]], name='sigma')
     self.model = Normal([self.mu, self.sigma])
     self.stat_calc = Identity(degree=2, cross=False)
     self.likfun = SynLikelihood(self.stat_calc)
     # create fake simulated data
     self.mu._fixed_values = [1.1]
     self.sigma._fixed_values = [1.0]
     self.y_sim = self.model.forward_simulate(self.model.get_input_values(), 100, rng=np.random.RandomState(1))
def infer_parameters_pmc():
    # define observation for true parameters mean=170, 65
    rng = np.random.RandomState(seed=1)
    y_obs = [np.array(rng.multivariate_normal([170, 65], np.eye(2), 1).reshape(2, ))]

    # define prior
    from abcpy.continuousmodels import Uniform
    mu0 = Uniform([[150], [200]], name="mu0")
    mu1 = Uniform([[25], [100]], name="mu1")
    # define the model
    height_weight_model = NestedBivariateGaussian([mu0, mu1])

    # define statistics
    from abcpy.statistics import Identity
    statistics_calculator = Identity(degree=2, cross=False)

    from abcpy.approx_lhd import SynLikelihood
    approx_lhd = SynLikelihood(statistics_calculator)

    # define sampling scheme
    from abcpy.inferences import PMC
    sampler = PMC([height_weight_model], [approx_lhd], backend, seed=2)

    # sample from scheme
    T, n_sample, n_samples_per_param = 2, 10, 10
    print('PMC Inferring')
    journal = sampler.sample([y_obs], T, n_sample, n_samples_per_param)

    return journal
示例#4
0
class SynLikelihoodTests(unittest.TestCase):
    def setUp(self):
        self.mu = Uniform([[-5.0], [5.0]], name='mu')
        self.sigma = Uniform([[5.0], [10.0]], name='sigma')
        self.model = Normal([self.mu, self.sigma])
        self.stat_calc = Identity(degree=2, cross=0)
        self.likfun = SynLikelihood(self.stat_calc)

    def test_likelihood(self):
        #Checks whether wrong input type produces error message
        self.assertRaises(TypeError, self.likfun.likelihood, 3.4, [2, 1])
        self.assertRaises(TypeError, self.likfun.likelihood, [2, 4], 3.4)

        # create observed data
        y_obs = [9.8]
        # create fake simulated data
        self.mu._fixed_values = [1.1]
        self.sigma._fixed_values = [1.0]
        y_sim = self.model.forward_simulate(self.model.get_input_values(),
                                            100,
                                            rng=np.random.RandomState(1))
        # calculate the statistics of the observed data
        comp_likelihood = self.likfun.likelihood(y_obs, y_sim)
        expected_likelihood = 0.00924953470649
        # This checks whether it computes a correct value and dimension is right
        self.assertLess(comp_likelihood - expected_likelihood, 10e-2)
示例#5
0
    def setUp(self):
        self.stat_calc1 = Identity(degree = 1, cross = 0)
        self.stat_calc2 = Identity(degree= 1, cross = 0)
        self.likfun1 = SynLikelihood(self.stat_calc1)
        self.likfun2 = SynLikelihood(self.stat_calc2)
        ## Define Models
        # define a uniform prior distribution
        self.mu = Uniform([[-5.0], [5.0]], name='mu')
        self.sigma = Uniform([[0.0], [10.0]], name='sigma')
        # define a Gaussian model
        self.model1 = Normal([self.mu,self.sigma])
        self.model2 = Normal([self.mu,self.sigma])

        #Check whether wrong sized distnacefuncs gives an error
        self.assertRaises(ValueError, ProductCombination, [self.model1,self.model2], [self.likfun1])

        self.jointapprox_lhd = ProductCombination([self.model1, self.model2], [self.likfun1, self.likfun2])
示例#6
0
class SynLikelihoodTests(unittest.TestCase):
    def setUp(self):
        self.mu = Uniform([[-5.0], [5.0]], name='mu')
        self.sigma = Uniform([[5.0], [10.0]], name='sigma')
        self.model = Normal([self.mu, self.sigma])
        self.stat_calc = Identity(degree=2, cross=False)
        self.likfun = SynLikelihood(self.stat_calc)
        # create fake simulated data
        self.mu._fixed_values = [1.1]
        self.sigma._fixed_values = [1.0]
        self.y_sim = self.model.forward_simulate(self.model.get_input_values(),
                                                 100,
                                                 rng=np.random.RandomState(1))

    def test_likelihood(self):
        # Checks whether wrong input type produces error message
        self.assertRaises(TypeError, self.likfun.loglikelihood, 3.4, [2, 1])
        self.assertRaises(TypeError, self.likfun.loglikelihood, [2, 4], 3.4)

        # create observed data
        y_obs = [1.8]
        # calculate the statistics of the observed data
        comp_loglikelihood = self.likfun.loglikelihood(y_obs, self.y_sim)
        expected_loglikelihood = -0.6434435652263701
        # This checks whether it computes a correct value and dimension is right
        self.assertAlmostEqual(comp_loglikelihood, expected_loglikelihood)

    def test_likelihood_multiple_observations(self):
        y_obs = [1.8, 0.9]
        comp_loglikelihood = self.likfun.loglikelihood(y_obs, self.y_sim)
        expected_loglikelihood = -1.2726154993040115
        # This checks whether it computes a correct value and dimension is right
        self.assertAlmostEqual(comp_loglikelihood, expected_loglikelihood)

    def test_loglikelihood_additive(self):
        y_obs = [1.8, 0.9]
        comp_loglikelihood_a = self.likfun.loglikelihood([y_obs[0]],
                                                         self.y_sim)
        comp_loglikelihood_b = self.likfun.loglikelihood([y_obs[1]],
                                                         self.y_sim)
        comp_loglikelihood_two = self.likfun.loglikelihood(y_obs, self.y_sim)

        self.assertAlmostEqual(comp_loglikelihood_two,
                               comp_loglikelihood_a + comp_loglikelihood_b)
示例#7
0
    sigma_abc = Uniform([[sigma_bounds[0]], [sigma_bounds[1]]], name='sigma')
    ABC_model = IidNormal([mu_abc, sigma_abc], iid_size=10, name='gaussian')
    statistic = GaussianStatistics()
    if results_folder is None:
        results_folder = "results/gaussian/"
    observation_folder = results_folder + '/' + args.observation_folder + "/"
    inference_folder = results_folder + '/' + args.inference_folder + "/"
    extract_params_and_weights_from_journal = extract_params_and_weights_from_journal_gaussian
    extract_posterior_mean_from_journal = extract_posterior_mean_from_journal_gaussian
else:
    raise NotImplementedError
save_dict_to_json(args.__dict__, inference_folder + 'config.json')

# now setup the Synthetic likelihood experiments or ratio estimation one:
if technique == "SL":
    approx_lhd = SynLikelihood(statistic)
elif technique == "RE":
    # for the RE approach: it is better to use pairwise combinations of the statistics in order to make comparison with
    # SL fair
    statistic = Identity(
        cross=True, previous_statistics=statistic,
        degree=1)  # this should automatically use the pairwise comb.
    # when instantiating this, it takes additional parameters; does it simulate from the model immediately?
    approx_lhd = PenLogReg(statistic, [ABC_model],
                           n_samples_per_param,
                           n_folds=10,
                           max_iter=100000,
                           seed=seed)
else:
    raise NotImplementedError
示例#8
0
def infer_parameters():
    # The data corresponding to model_1 defined below
    grades_obs = [
        3.872486707973337, 4.6735380808674405, 3.9703538990858376,
        4.11021272048805, 4.211048655421368, 4.154817956586653,
        4.0046893064392695, 4.01891381384729, 4.123804757702919,
        4.014941267301294, 3.888174595940634, 4.185275142948246,
        4.55148774469135, 3.8954427675259016, 4.229264035335705,
        3.839949451328312, 4.039402553532825, 4.128077814241238,
        4.361488645531874, 4.086279074446419, 4.370801602256129,
        3.7431697332475466, 4.459454162392378, 3.8873973643008255,
        4.302566721487124, 4.05556051626865, 4.128817316703757,
        3.8673704442215984, 4.2174459453805015, 4.202280254493361,
        4.072851400451234, 3.795173229398952, 4.310702877332585,
        4.376886328810306, 4.183704734748868, 4.332192463368128,
        3.9071312388426587, 4.311681374107893, 3.55187913252144,
        3.318878360783221, 4.187850500877817, 4.207923106081567,
        4.190462065625179, 4.2341474252986036, 4.110228694304768,
        4.1589891480847765, 4.0345604687633045, 4.090635481715123,
        3.1384654393449294, 4.20375641386518, 4.150452690356067,
        4.015304457401275, 3.9635442007388195, 4.075915739179875,
        3.5702080541929284, 4.722333310410388, 3.9087618197155227,
        4.3990088006390735, 3.968501165774181, 4.047603645360087,
        4.109184340976979, 4.132424805281853, 4.444358334346812,
        4.097211737683927, 4.288553086265748, 3.8668863066511303,
        3.8837108501541007
    ]

    # The prior information changing the class size and social background, depending on school location
    from abcpy.continuousmodels import Uniform, Normal
    school_location = Uniform([[0.2], [0.3]], )

    # The average class size of a certain school
    class_size = Normal([[school_location], [0.1]], )

    # The social background of a student
    background = Normal([[school_location], [0.1]], )

    # The grade a student would receive without any bias
    grade_without_additional_effects = Normal([[4.5], [0.25]], )

    # The grade a student of a certain school receives
    final_grade = grade_without_additional_effects - class_size - background

    # The data corresponding to model_2 defined below
    scholarship_obs = [
        2.7179657436207805, 2.124647285937229, 3.07193407853297,
        2.335024761813643, 2.871893855192, 3.4332002458233837,
        3.649996835818173, 3.50292335102711, 2.815638168018455,
        2.3581613289315992, 2.2794821846395568, 2.8725835459926503,
        3.5588573782815685, 2.26053126526137, 1.8998143530749971,
        2.101110815311782, 2.3482974964831573, 2.2707679029919206,
        2.4624550491079225, 2.867017757972507, 3.204249152084959,
        2.4489542437714213, 1.875415915801106, 2.5604889644872433,
        3.891985093269989, 2.7233633223405205, 2.2861070389383533,
        2.9758813233490082, 3.1183403287267755, 2.911814060853062,
        2.60896794303205, 3.5717098647480316, 3.3355752461779824,
        1.99172284546858, 2.339937680892163, 2.9835630207301636,
        2.1684912355975774, 3.014847335983034, 2.7844122961916202,
        2.752119871525148, 2.1567428931391635, 2.5803629307680644,
        2.7326646074552103, 2.559237193255186, 3.13478196958166,
        2.388760269933492, 3.2822443541491815, 2.0114405441787437,
        3.0380056368041073, 2.4889680313769724, 2.821660164621084,
        3.343985964873723, 3.1866861970287808, 4.4535037154856045,
        3.0026333138006027, 2.0675706089352612, 2.3835301730913185,
        2.584208398359566, 3.288077633446465, 2.6955853384148183,
        2.918315169739928, 3.2464814419322985, 2.1601516779909433,
        3.231003347780546, 1.0893224045062178, 0.8032302688764734,
        2.868438615047827
    ]

    # A quantity that determines whether a student will receive a scholarship
    scholarship_without_additional_effects = Normal([[2], [0.5]], )

    # A quantity determining whether a student receives a scholarship, including his social background
    final_scholarship = scholarship_without_additional_effects + 3 * background

    # Define a summary statistics for final grade and final scholarship
    from abcpy.statistics import Identity
    statistics_calculator_final_grade = Identity(degree=2, cross=False)
    statistics_calculator_final_scholarship = Identity(degree=3, cross=False)

    # Define a distance measure for final grade and final scholarship
    from abcpy.approx_lhd import SynLikelihood
    approx_lhd_final_grade = SynLikelihood(statistics_calculator_final_grade)
    approx_lhd_final_scholarship = SynLikelihood(
        statistics_calculator_final_scholarship)

    # Define a backend
    from abcpy.backends import BackendDummy as Backend
    backend = Backend()

    # Define a perturbation kernel
    from abcpy.perturbationkernel import DefaultKernel
    kernel = DefaultKernel([school_location, class_size, grade_without_additional_effects, \
                            background, scholarship_without_additional_effects])

    # Define sampling parameters
    T, n_sample, n_samples_per_param = 3, 250, 10

    # Define sampler
    from abcpy.inferences import PMC
    sampler = PMC([final_grade, final_scholarship], \
                     [approx_lhd_final_grade, approx_lhd_final_scholarship], backend, kernel)

    # Sample
    journal = sampler.sample([grades_obs, scholarship_obs], T, n_sample,
                             n_samples_per_param)
示例#9
0
    def test_sample(self):
        # setup backend
        backend = BackendDummy()

        # define a uniform prior distribution
        mu = Uniform([[-5.0], [5.0]], name='mu')
        sigma = Uniform([[0.0], [10.0]], name='sigma')
        # define a Gaussian model
        self.model = Normal([mu, sigma])

        # define sufficient statistics for the model
        stat_calc = Identity(degree=2, cross=0)

        # create fake observed data
        # y_obs = self.model.forward_simulate(1, np.random.RandomState(1))[0].tolist()
        y_obs = [np.array(9.8)]

        # Define the likelihood function
        likfun = SynLikelihood(stat_calc)

        T, n_sample, n_samples_per_param = 1, 10, 100
        sampler = PMC([self.model], [likfun], backend, seed=1)
        journal = sampler.sample([y_obs],
                                 T,
                                 n_sample,
                                 n_samples_per_param,
                                 covFactors=np.array([.1, .1]),
                                 iniPoints=None)
        mu_post_sample, sigma_post_sample, post_weights = np.array(
            journal.get_parameters()['mu']), np.array(
                journal.get_parameters()['sigma']), np.array(
                    journal.get_weights())

        # Compute posterior mean
        mu_post_mean, sigma_post_mean = journal.posterior_mean(
        )['mu'], journal.posterior_mean()['sigma']

        # test shape of sample
        mu_sample_shape, sigma_sample_shape, weights_sample_shape = (len(mu_post_sample), mu_post_sample[0].shape[1]), \
                                                                    (len(sigma_post_sample),
                                                                     sigma_post_sample[0].shape[1]), post_weights.shape
        self.assertEqual(mu_sample_shape, (10, 1))
        self.assertEqual(sigma_sample_shape, (10, 1))
        self.assertEqual(weights_sample_shape, (10, 1))
        self.assertLess(abs(mu_post_mean - (-3.373004641385251)), 1e-3)
        self.assertLess(abs(sigma_post_mean - 6.519325027532673), 1e-3)

        self.assertFalse(journal.number_of_simulations == 0)

        # use the PMC scheme for T = 2
        T, n_sample, n_samples_per_param = 2, 10, 100
        sampler = PMC([self.model], [likfun], backend, seed=1)
        journal = sampler.sample([y_obs],
                                 T,
                                 n_sample,
                                 n_samples_per_param,
                                 covFactors=np.array([.1, .1]),
                                 iniPoints=None)
        mu_post_sample, sigma_post_sample, post_weights = np.array(
            journal.get_parameters()['mu']), np.array(
                journal.get_parameters()['sigma']), np.array(
                    journal.get_weights())

        # Compute posterior mean
        mu_post_mean, sigma_post_mean = journal.posterior_mean(
        )['mu'], journal.posterior_mean()['sigma']

        # test shape of sample
        mu_sample_shape, sigma_sample_shape, weights_sample_shape = (len(mu_post_sample), mu_post_sample[0].shape[1]), \
                                                                    (len(sigma_post_sample),
                                                                     sigma_post_sample[0].shape[1]), post_weights.shape
        self.assertEqual(mu_sample_shape, (10, 1))
        self.assertEqual(sigma_sample_shape, (10, 1))
        self.assertEqual(weights_sample_shape, (10, 1))
        self.assertLess(abs(mu_post_mean - (-3.2517600952705257)), 1e-3)
        self.assertLess(abs(sigma_post_mean - 6.9214661382633365), 1e-3)

        self.assertFalse(journal.number_of_simulations == 0)
示例#10
0
 def setUp(self):
     self.mu = Uniform([[-5.0], [5.0]], name='mu')
     self.sigma = Uniform([[5.0], [10.0]], name='sigma')
     self.model = Normal([self.mu, self.sigma])
     self.stat_calc = Identity(degree=2, cross=0)
     self.likfun = SynLikelihood(self.stat_calc)