with open('../libs/All_shapes_334.pic','r') as f: all_shapes = pickle.load(f) boundary = list(all_shapes[zone]['boundary'][0].exterior.coords) assert boundary[0]==boundary[-1] with open(_result_dir + '/trajectories/bounds/' + G.name + '_bound_latlon.dat', 'w') as f: for x, y in boundary: f.write(str(x) + '\t' + str(y) + '\n') print "Finding best capacity factor..." capacity_factor, rejected_flights, H = find_good_scaling_capacity(G, _result_dir + "/networks/" + name_G + '_flights_selected.pic', target=target_rejected_flights) print "Found best capacity factor:", capacity_factor, "(rejected fraction", rejected_flights, "of flights)" #print "Capacities:", {n:H.node[n]['capacity'] for n in H.nodes()} write_down_capacities(H, save_file=_result_dir + '/trajectories/capacities/' + G.name + '_capacities_rec_rej' + str(target_rejected_flights) + '_new.dat') #print "Capacities saved as", _result_dir + '/trajectories/capacities/' + G.name + '_capacities_rec_rej' + str(target_rejected_flights) + '_new.dat' if zone in targets_eff_per_ACC.keys(): for eff_target in targets_eff_per_ACC[zone]: for i in range(n_iter): counter(i, n_iter, message="Doing simulations...") name_results = name_sim(name_G) + '_eff_' + str(eff_target) + '_rej' + str(target_rejected_flights) + '_new_' + str(i) + '.dat' with silence(True): trajs, stats = generate_traffic(deepcopy(G), save_file=_result_dir + '/trajectories/M1/' + name_results, record_stats_file=_result_dir + '/trajectories/M1/' + name_results.split('.dat')[0] + '_stats.dat', file_traffic=_result_dir + "/networks/" + name_G + '_flights_selected.pic', put_sectors=True, remove_flights_after_midnight=True, capacity_factor=capacity_factor, rectificate={'eff_target':eff_target, 'inplace':False, 'hard_fixed':False, 'remove_nodes':True, 'resample_trajectories':True}
boundary = list(all_shapes[country]['boundary'][0].exterior.coords) assert boundary[0]==boundary[-1] with open(result_dir + '/trajectories/bounds/' + G.name + '_bound_latlon.dat', 'w') as f: for x, y in boundary: f.write(str(x) + '\t' + str(y) + '\n') # -------------------------------------------------------------------------------------- paras_control = {'bootstrap_mode':True, 'bootstrap_only_time':True, 'ACtot':ACtot} #print "Finding best capacity factor..." #capacity_factor, rejected_flights, H = find_good_scaling_capacity(G, result_dir + "/networks/" + name_G + '_flights_selected.pic', # target=target_rejected_flights, silent=True, **paras_control) #print "Found best capacity factor:", capacity_factor, "(rejected fraction", rejected_flights, "of flights)" write_down_capacities(G, save_file=result_dir + '/trajectories/capacities/' + G.name + '_capacities_no_target_rej.dat') for i in range(n_iter): counter(i, n_iter, message="Doing simulations...") name_results = name_sim(name_G) + '_rej' + str(target_rejected_flights) + '_ACtot' + str(ACtot) + '_' + str(i) + '.dat' with silence(True): trajs, stats = generate_traffic(deepcopy(G), save_file= result_dir + '/trajectories/M1/' + name_results, record_stats_file=result_dir + '/trajectories/M1/' + name_results.split('.dat')[0] + '_stats.dat', file_traffic=result_dir + "/networks/" + name_G + '_flights_selected.pic', put_sectors=True, remove_flights_after_midnight=True, capacity_factor=1., **paras_control) #print "Ratio rejected:", stats['rejected_flights']/float(stats['flights'])