示例#1
0
def sample_935_2():
    """
    9.3.5_2 不同权重的评分: 只考虑胜率
    :return:
    """
    from abupy import ABuFileUtil
    score_fn = '../gen/score_tuple_array'
    if not ABuFileUtil.file_exist(score_fn):
        print(
            '../gen/score_tuple_array not exist! please execute sample_933 first!'
        )
        return
    """
        直接读取本地序列化文件
    """
    score_tuple_array = ABuFileUtil.load_pickle(score_fn)

    from abupy import WrsmScorer
    # 只有第一项为1,其他都是0代表只考虑胜率来评分
    scorer = WrsmScorer(score_tuple_array, weights=[1, 0, 0, 0])
    # 返回按照评分排序后的队列
    scorer_returns_max = scorer.fit_score()
    # index[-1]为最优参数序号
    best_score_tuple_grid = score_tuple_array[scorer_returns_max.index[-1]]
    AbuMetricsBase.show_general(best_score_tuple_grid.orders_pd,
                                best_score_tuple_grid.action_pd,
                                best_score_tuple_grid.capital,
                                best_score_tuple_grid.benchmark,
                                only_info=False)

    # 最后打印出只考虑胜率下最优结果使用的买入策略和卖出策略
    print(
        'best_score_tuple_grid.buy_factors, best_score_tuple_grid.sell_factors:\n',
        best_score_tuple_grid.buy_factors, best_score_tuple_grid.sell_factors)
示例#2
0
def sample_934():
    """
    9.3.4 度量结果的评分
    :return:
    """
    from abupy import ABuFileUtil
    score_fn = '../gen/score_tuple_array'
    if not ABuFileUtil.file_exist(score_fn):
        print(
            '../gen/score_tuple_array not exist! please execute sample_933 first!'
        )
        return
    """
        直接读取本地序列化文件
    """
    score_tuple_array = ABuFileUtil.load_pickle(score_fn)
    from abupy import WrsmScorer
    # 实例化一个评分类WrsmScorer,它的参数为之前GridSearch返回的score_tuple_array对象
    scorer = WrsmScorer(score_tuple_array)
    print('scorer.score_pd.tail():\n', scorer.score_pd.tail())

    # score_tuple_array[658]与grid_search.best_score_tuple_grid是一致的
    sfs = scorer.fit_score()
    # 打印前15个高分组合
    print('sfs[::-1][:15]:\n', sfs[::-1][:15])
示例#3
0
文件: c9.py 项目: 3774257/abu
def sample_935_2():
    """
    9.3.5_2 不同权重的评分: 只考虑胜率
    :return:
    """
    from abupy import ABuFileUtil
    score_fn = '../gen/score_tuple_array'
    if not ABuFileUtil.file_exist(score_fn):
        print('../gen/score_tuple_array not exist! please execute sample_933 first!')
        return

    """
        直接读取本地序列化文件
    """
    score_tuple_array = ABuFileUtil.load_pickle(score_fn)

    from abupy import WrsmScorer
    # 只有第一项为1,其他都是0代表只考虑胜率来评分
    scorer = WrsmScorer(score_tuple_array, weights=[1, 0, 0, 0])
    # 返回按照评分排序后的队列
    scorer_returns_max = scorer.fit_score()
    # index[-1]为最优参数序号
    best_score_tuple_grid = score_tuple_array[scorer_returns_max.index[-1]]
    AbuMetricsBase.show_general(best_score_tuple_grid.orders_pd,
                                best_score_tuple_grid.action_pd,
                                best_score_tuple_grid.capital,
                                best_score_tuple_grid.benchmark,
                                only_info=False)

    # 最后打印出只考虑胜率下最优结果使用的买入策略和卖出策略
    print('best_score_tuple_grid.buy_factors, best_score_tuple_grid.sell_factors:\n', best_score_tuple_grid.buy_factors,
          best_score_tuple_grid.sell_factors)
示例#4
0
文件: c9.py 项目: 3774257/abu
def sample_935_1():
    """
    9.3.5_1 不同权重的评分: 只考虑投资回报来评分
    :return:
    """
    from abupy import ABuFileUtil
    score_fn = '../gen/score_tuple_array'
    if not ABuFileUtil.file_exist(score_fn):
        print('../gen/score_tuple_array not exist! please execute sample_933 first!')
        return

    """
        直接读取本地序列化文件
    """
    score_tuple_array = ABuFileUtil.load_pickle(score_fn)

    from abupy import WrsmScorer
    # 实例化WrsmScorer,参数weights,只有第二项为1,其他都是0,
    # 代表只考虑投资回报来评分
    scorer = WrsmScorer(score_tuple_array, weights=[0, 1, 0, 0])
    # 返回排序后的队列
    scorer_returns_max = scorer.fit_score()
    # 因为是倒序排序,所以index最后一个为最优参数
    best_score_tuple_grid = score_tuple_array[scorer_returns_max.index[-1]]
    # 由于篇幅,最优结果只打印文字信息
    AbuMetricsBase.show_general(best_score_tuple_grid.orders_pd,
                                best_score_tuple_grid.action_pd,
                                best_score_tuple_grid.capital,
                                best_score_tuple_grid.benchmark,
                                only_info=True)

    # 最后打印出只考虑投资回报下最优结果使用的买入策略和卖出策略
    print('best_score_tuple_grid.buy_factors, best_score_tuple_grid.sell_factors:\n', best_score_tuple_grid.buy_factors,
          best_score_tuple_grid.sell_factors)
示例#5
0
文件: c9.py 项目: zly111/abu
def sample_935_1():
    """
    9.3.5_1 不同权重的评分: 只考虑投资回报来评分
    :return:
    """
    from abupy import ABuFileUtil
    score_fn = '../gen/score_tuple_array'
    if not ABuFileUtil.file_exist(score_fn):
        print('../gen/score_tuple_array not exist! please execute sample_933 first!')
        return

    """
        直接读取本地序列化文件
    """
    score_tuple_array = ABuFileUtil.load_pickle(score_fn)

    from abupy import WrsmScorer
    # 实例化WrsmScorer,参数weights,只有第二项为1,其他都是0,
    # 代表只考虑投资回报来评分
    scorer = WrsmScorer(score_tuple_array, weights=[0, 1, 0, 0])
    # 返回排序后的队列
    scorer_returns_max = scorer.fit_score()
    # 因为是倒序排序,所以index最后一个为最优参数
    best_score_tuple_grid = score_tuple_array[scorer_returns_max.index[-1]]
    # 由于篇幅,最优结果只打印文字信息
    AbuMetricsBase.show_general(best_score_tuple_grid.orders_pd,
                                best_score_tuple_grid.action_pd,
                                best_score_tuple_grid.capital,
                                best_score_tuple_grid.benchmark,
                                only_info=True)

    # 最后打印出只考虑投资回报下最优结果使用的买入策略和卖出策略
    print('best_score_tuple_grid.buy_factors, best_score_tuple_grid.sell_factors:\n', best_score_tuple_grid.buy_factors,
          best_score_tuple_grid.sell_factors)
示例#6
0
文件: c9.py 项目: 3774257/abu
def sample_934():
    """
    9.3.4 度量结果的评分
    :return:
    """
    from abupy import ABuFileUtil
    score_fn = '../gen/score_tuple_array'
    if not ABuFileUtil.file_exist(score_fn):
        print('../gen/score_tuple_array not exist! please execute sample_933 first!')
        return

    """
        直接读取本地序列化文件
    """
    score_tuple_array = ABuFileUtil.load_pickle(score_fn)
    from abupy import WrsmScorer
    # 实例化一个评分类WrsmScorer,它的参数为之前GridSearch返回的score_tuple_array对象
    scorer = WrsmScorer(score_tuple_array)
    print('scorer.score_pd.tail():\n', scorer.score_pd.tail())

    # score_tuple_array[658]与grid_search.best_score_tuple_grid是一致的
    sfs = scorer.fit_score()
    # 打印前15个高分组合
    print('sfs[::-1][:15]:\n', sfs[::-1][:15])
示例#7
0
for sell_factors_product_item in sell_factors_product:
    # sell_factors_product_item[0]['slippage'] = AbuSlippageSellOpen
    sell_factors_product_item[0]['slippage'] = AbuSlippageSellClose
    # sell_factors_product_item[0]['slippage'] = AbuSlippageSellMinMax

print('卖出因子参数共有{}种组合方式'.format(len(sell_factors_product)))
ABuEnv.date_str = datetime.datetime.now().strftime("_%Y_%m_%d")

grid_search = GridSearch(read_cash,choice_symbols,buy_factors_product=buy_factors_product,
                         sell_factors_product=sell_factors_product,n_folds=1,start=startDate, end=endDate)
if __name__ == '__main__':    #多线程必须内容,不可删除。
    scores,score_tuple_array = grid_search.fit(n_jobs=-1)
    store_python_obj(score_tuple_array, 'score_tuple_array'+ABuEnv.date_str, show_log=False)
#-------权重方式开始------
    if score_tuple_array != None:
        scorer = WrsmScorer(score_tuple_array, weights=[1, 0, 0, 0])
        scorer_returns_max = scorer.fit_score()
        best_result_tuple = score_tuple_array[scorer_returns_max.index[-1]]
        print(best_result_tuple.buy_factors) #打印最优因子
        print(best_result_tuple.sell_factors) #打印最优因子
        store_abu_result_tuple(best_result_tuple, n_folds=None, store_type=EStoreAbu.E_STORE_CUSTOM_NAME,
                               custom_name='best_1_0_0_0')
        AbuMetricsBase.show_general(best_result_tuple.orders_pd, best_result_tuple.action_pd,
                                    best_result_tuple.capital, best_result_tuple.benchmark, only_info=False)

        scorer = WrsmScorer(score_tuple_array, weights=[0, 1, 0, 0])
        scorer_returns_max = scorer.fit_score()
        best_result_tuple = score_tuple_array[scorer_returns_max.index[-1]]
        print(best_result_tuple.buy_factors)  # 打印最优因子
        print(best_result_tuple.sell_factors)  # 打印最优因子
        store_abu_result_tuple(best_result_tuple, n_folds=None, store_type=EStoreAbu.E_STORE_CUSTOM_NAME,