def __init__(self, f, internal_name=False): """ Create the modular abelian variety `A_f` attached to the newform `f`. INPUT: f -- a newform EXAMPLES:: sage: f = CuspForms(37).newforms('a')[0] sage: f.abelian_variety() Newform abelian subvariety 37a of dimension 1 of J0(37) """ if not isinstance(f, Newform): raise TypeError, "f must be a newform" self.__f = f self._is_hecke_stable = True K = f.qexp().base_ring() if K == QQ: variable_name = None else: variable_name = K.variable_name() self.__named_newforms = { variable_name: self.__f } if not internal_name: self.__named_newforms[None] = self.__f ModularAbelianVariety_modsym_abstract.__init__(self, (f.group(),), QQ, is_simple=True, newform_level = (f.level(), f.group()), isogeny_number=f.number(), number=0)
def __init__(self, f, internal_name=False): """ Create the modular abelian variety `A_f` attached to the newform `f`. INPUT: f -- a newform EXAMPLES:: sage: f = CuspForms(37).newforms('a')[0] sage: f.abelian_variety() Newform abelian subvariety 37a of dimension 1 of J0(37) """ if not isinstance(f, Newform): raise TypeError, "f must be a newform" self.__f = f self._is_hecke_stable = True K = f.qexp().base_ring() if K == QQ: variable_name = None else: variable_name = K.variable_name() self.__named_newforms = {variable_name: self.__f} if not internal_name: self.__named_newforms[None] = self.__f ModularAbelianVariety_modsym_abstract.__init__( self, (f.group(), ), QQ, is_simple=True, newform_level=(f.level(), f.group()), isogeny_number=f.number(), number=0)
def __init__(self, group): """ Create an ambient Jacobian modular abelian variety. EXAMPLES:: sage: A = J0(37); A Abelian variety J0(37) of dimension 2 sage: type(A) <class 'sage.modular.abvar.abvar_ambient_jacobian.ModAbVar_ambient_jacobian_class_with_category'> sage: A.group() Congruence Subgroup Gamma0(37) """ ModularAbelianVariety_modsym_abstract.__init__(self, (group, ), QQ) self.__group = group self._is_hecke_stable = True
def __init__(self, group): """ Create an ambient Jacobian modular abelian variety. EXAMPLES:: sage: A = J0(37); A Abelian variety J0(37) of dimension 2 sage: type(A) <class 'sage.modular.abvar.abvar_ambient_jacobian.ModAbVar_ambient_jacobian_class_with_category'> sage: A.group() Congruence Subgroup Gamma0(37) """ ModularAbelianVariety_modsym_abstract.__init__(self, (group,), QQ) self.__group = group self._is_hecke_stable = True