示例#1
0
class AcadosInterface(SolverInterface):
    """
    The ACADOS solver interface

    Attributes
    ----------
    acados_ocp: AcadosOcp
        The current AcadosOcp reference
    acados_model: AcadosModel
        The current AcadosModel reference
    lagrange_costs: SX
        The lagrange cost function
    mayer_costs: SX
        The mayer cost function
    y_ref = list[np.ndarray]
        The lagrange targets
    y_ref_end = list[np.ndarray]
        The mayer targets
    params = dict
        All the parameters to optimize
    W: np.ndarray
        The Lagrange weights
    W_e: np.ndarray
        The Mayer weights
    status: int
        The status of the optimization
    all_constr: SX
        All the Lagrange constraints
    end_constr: SX
        All the Mayer constraints
    all_g_bounds = Bounds
        All the Lagrange bounds on the variables
    end_g_bounds = Bounds
        All the Mayer bounds on the variables
    x_bound_max = np.ndarray
        All the bounds max
    x_bound_min = np.ndarray
        All the bounds min
    Vu: np.ndarray
        The control objective functions
    Vx: np.ndarray
        The Lagrange state objective functions
    Vxe: np.ndarray
        The Mayer state objective functions
    opts: ACADOS
        Options of Acados from ACADOS
    Methods
    -------
    __acados_export_model(self, ocp: OptimalControlProgram)
        Creating a generic ACADOS model
    __prepare_acados(self, ocp: OptimalControlProgram)
        Set some important ACADOS variables
    __set_constr_type(self, constr_type: str = "BGH")
        Set the type of constraints
    __set_constraints(self, ocp: OptimalControlProgram)
        Set the constraints from the ocp
    __set_cost_type(self, cost_type: str = "NONLINEAR_LS")
        Set the type of cost functions
    __set_costs(self, ocp: OptimalControlProgram)
        Set the cost functions from ocp
    __update_solver(self)
        Update the ACADOS solver to new values
    get_optimized_value(self) -> Union[list[dict], dict]
        Get the previously optimized solution
    solve(self) -> "AcadosInterface"
        Solve the prepared ocp
    """
    def __init__(self, ocp, solver_options: Solver.ACADOS = None):
        """
        Parameters
        ----------
        ocp: OptimalControlProgram
            A reference to the current OptimalControlProgram
        solver_options: ACADOS
            The options to pass to the solver
        """

        if not isinstance(ocp.cx(), SX):
            raise RuntimeError(
                "CasADi graph must be SX to be solved with ACADOS. Please set use_sx to True in OCP"
            )

        super().__init__(ocp)

        # solver_options = solver_options.__dict__
        if solver_options is None:
            solver_options = Solver.ACADOS()

        self.acados_ocp = AcadosOcp(acados_path=solver_options.acados_dir)
        self.acados_model = AcadosModel()

        self.__set_cost_type(solver_options.cost_type)
        self.__set_constr_type(solver_options.constr_type)

        self.lagrange_costs = SX()
        self.mayer_costs = SX()
        self.y_ref = []
        self.y_ref_end = []
        self.nparams = 0
        self.params_initial_guess = None
        self.params_bounds = None
        self.__acados_export_model(ocp)
        self.__prepare_acados(ocp)
        self.ocp_solver = None
        self.W = np.zeros((0, 0))
        self.W_e = np.zeros((0, 0))
        self.status = None
        self.out = {}
        self.real_time_to_optimize = -1

        self.all_constr = None
        self.end_constr = SX()
        self.all_g_bounds = Bounds(interpolation=InterpolationType.CONSTANT)
        self.end_g_bounds = Bounds(interpolation=InterpolationType.CONSTANT)
        self.x_bound_max = np.ndarray((self.acados_ocp.dims.nx, 3))
        self.x_bound_min = np.ndarray((self.acados_ocp.dims.nx, 3))
        self.Vu = np.array([],
                           dtype=np.int64).reshape(0,
                                                   ocp.nlp[0].controls.shape)
        self.Vx = np.array([], dtype=np.int64).reshape(0,
                                                       ocp.nlp[0].states.shape)
        self.Vxe = np.array([],
                            dtype=np.int64).reshape(0, ocp.nlp[0].states.shape)

        self.opts = Solver.ACADOS(
        ) if solver_options is None else solver_options

    def __acados_export_model(self, ocp):
        """
        Creating a generic ACADOS model

        Parameters
        ----------
        ocp: OptimalControlProgram
            A reference to the current OptimalControlProgram

        """

        if ocp.n_phases > 1:
            raise NotImplementedError(
                "More than 1 phase is not implemented yet with ACADOS backend")

        # Declare model variables
        x = ocp.nlp[0].states.cx
        u = ocp.nlp[0].controls.cx
        p = ocp.nlp[0].parameters.cx
        if ocp.v.parameters_in_list:
            for param in ocp.v.parameters_in_list:
                if str(param.cx)[:11] == f"time_phase_":
                    raise RuntimeError(
                        "Time constraint not implemented yet with Acados.")

        self.nparams = ocp.nlp[0].parameters.shape
        self.params_initial_guess = ocp.v.parameters_in_list.initial_guess
        self.params_initial_guess.check_and_adjust_dimensions(self.nparams, 1)
        self.params_bounds = ocp.v.parameters_in_list.bounds
        self.params_bounds.check_and_adjust_dimensions(self.nparams, 1)
        x = vertcat(p, x)
        x_dot = SX.sym("x_dot", x.shape[0], x.shape[1])

        f_expl = vertcat([0] * self.nparams,
                         ocp.nlp[0].dynamics_func(x[self.nparams:, :], u, p))
        f_impl = x_dot - f_expl

        self.acados_model.f_impl_expr = f_impl
        self.acados_model.f_expl_expr = f_expl
        self.acados_model.x = x
        self.acados_model.xdot = x_dot
        self.acados_model.u = u
        self.acados_model.con_h_expr = np.zeros((0, 0))
        self.acados_model.con_h_expr_e = np.zeros((0, 0))
        self.acados_model.p = []
        now = datetime.now()  # current date and time
        self.acados_model.name = f"model_{now.strftime('%Y_%m_%d_%H%M%S%f')[:-4]}"

    def __prepare_acados(self, ocp):
        """
        Set some important ACADOS variables

        Parameters
        ----------
        ocp: OptimalControlProgram
            A reference to the current OptimalControlProgram
        """

        # set model
        self.acados_ocp.model = self.acados_model

        # set time
        self.acados_ocp.solver_options.tf = ocp.nlp[0].tf

        # set dimensions
        self.acados_ocp.dims.nx = ocp.nlp[0].states.shape + ocp.nlp[
            0].parameters.shape
        self.acados_ocp.dims.nu = ocp.nlp[0].controls.shape
        self.acados_ocp.dims.N = ocp.nlp[0].ns

    def __set_constr_type(self, constr_type: str = "BGH"):
        """
        Set the type of constraints

        Parameters
        ----------
        constr_type: str
            The requested type of constraints
        """

        self.acados_ocp.constraints.constr_type = constr_type
        self.acados_ocp.constraints.constr_type_e = constr_type

    def __set_constraints(self, ocp):
        """
        Set the constraints from the ocp

        Parameters
        ----------
        ocp: OptimalControlProgram
            A reference to the current OptimalControlProgram
        """

        # constraints handling in self.acados_ocp
        if ocp.nlp[
                0].x_bounds.type != InterpolationType.CONSTANT_WITH_FIRST_AND_LAST_DIFFERENT:
            raise NotImplementedError(
                "ACADOS must declare an InterpolationType.CONSTANT_WITH_FIRST_AND_LAST_DIFFERENT "
                "for the x_bounds")
        if ocp.nlp[
                0].u_bounds.type != InterpolationType.CONSTANT_WITH_FIRST_AND_LAST_DIFFERENT:
            raise NotImplementedError(
                "ACADOS must declare an InterpolationType.CONSTANT_WITH_FIRST_AND_LAST_DIFFERENT "
                "for the u_bounds")
        u_min = np.array(ocp.nlp[0].u_bounds.min)
        u_max = np.array(ocp.nlp[0].u_bounds.max)
        x_min = np.array(ocp.nlp[0].x_bounds.min)
        x_max = np.array(ocp.nlp[0].x_bounds.max)
        self.all_constr = SX()
        self.end_constr = SX()
        # TODO:change for more node flexibility on bounds
        self.all_g_bounds = Bounds(interpolation=InterpolationType.CONSTANT)
        self.end_g_bounds = Bounds(interpolation=InterpolationType.CONSTANT)
        for i, nlp in enumerate(ocp.nlp):
            x = nlp.states.cx
            u = nlp.controls.cx
            p = nlp.parameters.cx

            for g, G in enumerate(nlp.g):
                if not G:
                    continue

                if G.node[0] == Node.ALL or G.node[0] == Node.ALL_SHOOTING:
                    self.all_constr = vertcat(self.all_constr,
                                              G.function(x, u, p))
                    self.all_g_bounds.concatenate(G.bounds)
                    if G.node[0] == Node.ALL:
                        self.end_constr = vertcat(self.end_constr,
                                                  G.function(x, u, p))
                        self.end_g_bounds.concatenate(G.bounds)

                elif G.node[0] == Node.END:
                    self.end_constr = vertcat(self.end_constr,
                                              G.function(x, u, p))
                    self.end_g_bounds.concatenate(G.bounds)

                else:
                    raise RuntimeError(
                        "Except for states and controls, Acados solver only handles constraints on last or all nodes."
                    )

        self.acados_model.con_h_expr = self.all_constr
        self.acados_model.con_h_expr_e = self.end_constr

        if not np.all(np.all(u_min.T == u_min.T[0, :], axis=0)):
            raise NotImplementedError(
                "u_bounds min must be the same at each shooting point with ACADOS"
            )
        if not np.all(np.all(u_max.T == u_max.T[0, :], axis=0)):
            raise NotImplementedError(
                "u_bounds max must be the same at each shooting point with ACADOS"
            )

        if (not np.isfinite(u_min).all() or not np.isfinite(x_min).all()
                or not np.isfinite(u_max).all()
                or not np.isfinite(x_max).all()):
            raise NotImplementedError(
                "u_bounds and x_bounds cannot be set to infinity in ACADOS. Consider changing it "
                "to a big value instead.")

        # setup state constraints
        # TODO replace all these np.concatenate by proper bound and initial_guess classes
        self.x_bound_max = np.ndarray((self.acados_ocp.dims.nx, 3))
        self.x_bound_min = np.ndarray((self.acados_ocp.dims.nx, 3))
        param_bounds_max = []
        param_bounds_min = []

        if self.nparams:
            param_bounds_max = self.params_bounds.max[:, 0]
            param_bounds_min = self.params_bounds.min[:, 0]

        for i in range(3):
            self.x_bound_max[:, i] = np.concatenate(
                (param_bounds_max, np.array(ocp.nlp[0].x_bounds.max[:, i])))
            self.x_bound_min[:, i] = np.concatenate(
                (param_bounds_min, np.array(ocp.nlp[0].x_bounds.min[:, i])))

        # setup control constraints
        self.acados_ocp.constraints.lbu = np.array(ocp.nlp[0].u_bounds.min[:,
                                                                           0])
        self.acados_ocp.constraints.ubu = np.array(ocp.nlp[0].u_bounds.max[:,
                                                                           0])
        self.acados_ocp.constraints.idxbu = np.array(
            range(self.acados_ocp.dims.nu))
        self.acados_ocp.dims.nbu = self.acados_ocp.dims.nu

        # initial state constraints
        self.acados_ocp.constraints.lbx_0 = self.x_bound_min[:, 0]
        self.acados_ocp.constraints.ubx_0 = self.x_bound_max[:, 0]
        self.acados_ocp.constraints.idxbx_0 = np.array(
            range(self.acados_ocp.dims.nx))
        self.acados_ocp.dims.nbx_0 = self.acados_ocp.dims.nx

        # setup path state constraints
        self.acados_ocp.constraints.Jbx = np.eye(self.acados_ocp.dims.nx)
        self.acados_ocp.constraints.lbx = self.x_bound_min[:, 1]
        self.acados_ocp.constraints.ubx = self.x_bound_max[:, 1]
        self.acados_ocp.constraints.idxbx = np.array(
            range(self.acados_ocp.dims.nx))
        self.acados_ocp.dims.nbx = self.acados_ocp.dims.nx

        # setup terminal state constraints
        self.acados_ocp.constraints.Jbx_e = np.eye(self.acados_ocp.dims.nx)
        self.acados_ocp.constraints.lbx_e = self.x_bound_min[:, -1]
        self.acados_ocp.constraints.ubx_e = self.x_bound_max[:, -1]
        self.acados_ocp.constraints.idxbx_e = np.array(
            range(self.acados_ocp.dims.nx))
        self.acados_ocp.dims.nbx_e = self.acados_ocp.dims.nx

        # setup algebraic constraint
        self.acados_ocp.constraints.lh = np.array(self.all_g_bounds.min[:, 0])
        self.acados_ocp.constraints.uh = np.array(self.all_g_bounds.max[:, 0])

        # setup terminal algebraic constraint
        self.acados_ocp.constraints.lh_e = np.array(self.end_g_bounds.min[:,
                                                                          0])
        self.acados_ocp.constraints.uh_e = np.array(self.end_g_bounds.max[:,
                                                                          0])

    def __set_cost_type(self, cost_type: str = "NONLINEAR_LS"):
        """
        Set the type of cost functions

        Parameters
        ----------
        cost_type: str
            The type of cost function
        """

        self.acados_ocp.cost.cost_type = cost_type
        self.acados_ocp.cost.cost_type_e = cost_type

    def __set_costs(self, ocp):
        """
        Set the cost functions from ocp

        Parameters
        ----------
        ocp: OptimalControlProgram
            A reference to the current OptimalControlProgram
        """
        def add_linear_ls_lagrange(acados, objectives):
            def add_objective(n_variables, is_state):
                v_var = np.zeros(n_variables)
                var_type = acados.ocp.nlp[
                    0].states if is_state else acados.ocp.nlp[0].controls
                rows = objectives.rows + var_type[
                    objectives.params["key"]].index[0]
                v_var[rows] = 1.0
                if is_state:
                    acados.Vx = np.vstack((acados.Vx, np.diag(v_var)))
                    acados.Vu = np.vstack(
                        (acados.Vu, np.zeros((n_states, n_controls))))
                else:
                    acados.Vx = np.vstack(
                        (acados.Vx, np.zeros((n_controls, n_states))))
                    acados.Vu = np.vstack((acados.Vu, np.diag(v_var)))
                acados.W = linalg.block_diag(
                    acados.W, np.diag([objectives.weight] * n_variables))

                node_idx = objectives.node_idx[:-1] if objectives.node[
                    0] == Node.ALL else objectives.node_idx

                y_ref = [
                    np.zeros((n_states if is_state else n_controls, 1))
                    for _ in node_idx
                ]
                if objectives.target is not None:
                    for idx in node_idx:
                        y_ref[idx][rows] = objectives.target[...,
                                                             idx].T.reshape(
                                                                 (-1, 1))
                acados.y_ref.append(y_ref)

            if objectives.type in allowed_control_objectives:
                add_objective(n_controls, False)
            elif objectives.type in allowed_state_objectives:
                add_objective(n_states, True)
            else:
                raise RuntimeError(
                    f"{objectives[0]['objective'].type.name} is an incompatible objective term with LINEAR_LS cost type"
                )

        def add_linear_ls_mayer(acados, objectives):
            if objectives.type in allowed_state_objectives:
                vxe = np.zeros(n_states)
                rows = objectives.rows + acados.ocp.nlp[0].states[
                    objectives.params["key"]].index[0]
                vxe[rows] = 1.0
                acados.Vxe = np.vstack((acados.Vxe, np.diag(vxe)))
                acados.W_e = linalg.block_diag(
                    acados.W_e, np.diag([objectives.weight] * n_states))

                y_ref_end = np.zeros((n_states, 1))
                if objectives.target is not None:
                    y_ref_end[rows] = objectives.target[..., -1].T.reshape(
                        (-1, 1))
                acados.y_ref_end.append(y_ref_end)

            else:
                raise RuntimeError(
                    f"{objectives.type.name} is an incompatible objective term with LINEAR_LS cost type"
                )

        def add_nonlinear_ls_lagrange(acados, objectives, x, u, p):
            acados.lagrange_costs = vertcat(
                acados.lagrange_costs,
                objectives.function(x, u, p).reshape((-1, 1)))
            acados.W = linalg.block_diag(
                acados.W,
                np.diag([objectives.weight] * objectives.function.numel_out()))

            node_idx = objectives.node_idx[:-1] if objectives.node[
                0] == Node.ALL else objectives.node_idx
            if objectives.target is not None:
                acados.y_ref.append([
                    objectives.target[..., idx].T.reshape((-1, 1))
                    for idx in node_idx
                ])
            else:
                acados.y_ref.append([
                    np.zeros((objectives.function.numel_out(), 1))
                    for _ in node_idx
                ])

        def add_nonlinear_ls_mayer(acados, objectives, x, u, p):
            acados.W_e = linalg.block_diag(
                acados.W_e,
                np.diag([objectives.weight] * objectives.function.numel_out()))
            x = x if objectives.function.sparsity_in("i0").shape != (
                0, 0) else []
            u = u if objectives.function.sparsity_in("i1").shape != (
                0, 0) else []
            acados.mayer_costs = vertcat(
                acados.mayer_costs,
                objectives.function(x, u, p).reshape((-1, 1)))

            if objectives.target is not None:
                acados.y_ref_end.append(objectives.target[..., -1].T.reshape(
                    (-1, 1)))
            else:
                acados.y_ref_end.append(
                    np.zeros((objectives.function.numel_out(), 1)))

        if ocp.n_phases != 1:
            raise NotImplementedError(
                "ACADOS with more than one phase is not implemented yet.")
        # costs handling in self.acados_ocp
        self.y_ref = []
        self.y_ref_end = []
        self.lagrange_costs = SX()
        self.mayer_costs = SX()
        self.W = np.zeros((0, 0))
        self.W_e = np.zeros((0, 0))
        allowed_control_objectives = [ObjectiveFcn.Lagrange.MINIMIZE_CONTROL]
        allowed_state_objectives = [
            ObjectiveFcn.Lagrange.MINIMIZE_STATE,
            ObjectiveFcn.Mayer.TRACK_STATE
        ]

        if self.acados_ocp.cost.cost_type == "LINEAR_LS":
            n_states = ocp.nlp[0].states.shape
            n_controls = ocp.nlp[0].controls.shape
            self.Vu = np.array([], dtype=np.int64).reshape(0, n_controls)
            self.Vx = np.array([], dtype=np.int64).reshape(0, n_states)
            self.Vxe = np.array([], dtype=np.int64).reshape(0, n_states)
            for i in range(ocp.n_phases):
                for J in ocp.nlp[i].J:
                    if not J:
                        continue

                    if J.multi_thread:
                        raise RuntimeError(
                            f"The objective function {J.name} was declared with multi_thread=True, "
                            f"but this is not possible to multi_thread objective function with ACADOS"
                        )

                    if J.type.get_type() == ObjectiveFunction.LagrangeFunction:
                        add_linear_ls_lagrange(self, J)

                        # Deal with last node to match ipopt formulation
                        if J.node[0] == Node.ALL:
                            add_linear_ls_mayer(self, J)

                    elif J.type.get_type() == ObjectiveFunction.MayerFunction:
                        add_linear_ls_mayer(self, J)

                    else:
                        raise RuntimeError(
                            "The objective function is not Lagrange nor Mayer."
                        )

                if self.nparams:
                    raise RuntimeError(
                        "Params not yet handled with LINEAR_LS cost type")

            # Set costs
            self.acados_ocp.cost.Vx = self.Vx if self.Vx.shape[0] else np.zeros(
                (0, 0))
            self.acados_ocp.cost.Vu = self.Vu if self.Vu.shape[0] else np.zeros(
                (0, 0))
            self.acados_ocp.cost.Vx_e = self.Vxe if self.Vxe.shape[
                0] else np.zeros((0, 0))

            # Set dimensions
            self.acados_ocp.dims.ny = sum(
                [len(data[0]) for data in self.y_ref])
            self.acados_ocp.dims.ny_e = sum(
                [len(data) for data in self.y_ref_end])

            # Set weight
            self.acados_ocp.cost.W = self.W
            self.acados_ocp.cost.W_e = self.W_e

            # Set target shape
            self.acados_ocp.cost.yref = np.zeros(
                (self.acados_ocp.cost.W.shape[0], ))
            self.acados_ocp.cost.yref_e = np.zeros(
                (self.acados_ocp.cost.W_e.shape[0], ))

        elif self.acados_ocp.cost.cost_type == "NONLINEAR_LS":
            for i, nlp in enumerate(ocp.nlp):
                for j, J in enumerate(nlp.J):
                    if not J:
                        continue

                    if J.multi_thread:
                        raise RuntimeError(
                            f"The objective function {J.name} was declared with multi_thread=True, "
                            f"but this is not possible to multi_thread objective function with ACADOS"
                        )

                    if J.type.get_type() == ObjectiveFunction.LagrangeFunction:
                        add_nonlinear_ls_lagrange(self, J, nlp.states.cx,
                                                  nlp.controls.cx,
                                                  nlp.parameters.cx)

                        # Deal with last node to match ipopt formulation
                        if J.node[0] == Node.ALL:
                            add_nonlinear_ls_mayer(self, J, nlp.states.cx,
                                                   nlp.controls.cx,
                                                   nlp.parameters.cx)

                    elif J.type.get_type() == ObjectiveFunction.MayerFunction:
                        add_nonlinear_ls_mayer(self, J, nlp.states.cx,
                                               nlp.controls.cx,
                                               nlp.parameters.cx)

                    else:
                        raise RuntimeError(
                            "The objective function is not Lagrange nor Mayer."
                        )

            # parameter as mayer function
            # IMPORTANT: it is considered that only parameters are stored in ocp.objectives, for now.
            if self.nparams:
                nlp = ocp.nlp[0]  # Assume 1 phase
                for j, J in enumerate(ocp.J):
                    add_nonlinear_ls_mayer(self, J, nlp.states.cx,
                                           nlp.controls.cx, nlp.parameters.cx)

            # Set costs
            self.acados_ocp.model.cost_y_expr = (self.lagrange_costs.reshape(
                (-1, 1)) if self.lagrange_costs.numel() else SX(1, 1))
            self.acados_ocp.model.cost_y_expr_e = (self.mayer_costs.reshape(
                (-1, 1)) if self.mayer_costs.numel() else SX(1, 1))

            # Set dimensions
            self.acados_ocp.dims.ny = self.acados_ocp.model.cost_y_expr.shape[
                0]
            self.acados_ocp.dims.ny_e = self.acados_ocp.model.cost_y_expr_e.shape[
                0]

            # Set weight
            self.acados_ocp.cost.W = np.zeros(
                (1, 1)) if self.W.shape == (0, 0) else self.W
            self.acados_ocp.cost.W_e = np.zeros(
                (1, 1)) if self.W_e.shape == (0, 0) else self.W_e

            # Set target shape
            self.acados_ocp.cost.yref = np.zeros(
                (self.acados_ocp.cost.W.shape[0], ))
            self.acados_ocp.cost.yref_e = np.zeros(
                (self.acados_ocp.cost.W_e.shape[0], ))

        elif self.acados_ocp.cost.cost_type == "EXTERNAL":
            raise RuntimeError(
                "EXTERNAL is not interfaced yet, please use NONLINEAR_LS")

        else:
            raise RuntimeError(
                "Available acados cost type: 'LINEAR_LS', 'NONLINEAR_LS' and 'EXTERNAL'."
            )

    def __update_solver(self):
        """
        Update the ACADOS solver to new values
        """

        param_init = []
        for n in range(self.acados_ocp.dims.N):
            if self.y_ref:  # Target
                self.ocp_solver.cost_set(
                    n, "yref",
                    np.vstack([data[n] for data in self.y_ref])[:, 0])
            # check following line
            # self.ocp_solver.cost_set(n, "W", self.W)

            if self.nparams:
                param_init = self.params_initial_guess.init.evaluate_at(n)

            self.ocp_solver.set(
                n, "x",
                np.concatenate(
                    (param_init, self.ocp.nlp[0].x_init.init.evaluate_at(n))))
            self.ocp_solver.set(n, "u",
                                self.ocp.nlp[0].u_init.init.evaluate_at(n))
            self.ocp_solver.constraints_set(n, "lbu",
                                            self.ocp.nlp[0].u_bounds.min[:, 0])
            self.ocp_solver.constraints_set(n, "ubu",
                                            self.ocp.nlp[0].u_bounds.max[:, 0])
            self.ocp_solver.constraints_set(n, "uh", self.all_g_bounds.max[:,
                                                                           0])
            self.ocp_solver.constraints_set(n, "lh", self.all_g_bounds.min[:,
                                                                           0])

            if n == 0:
                self.ocp_solver.constraints_set(n, "lbx", self.x_bound_min[:,
                                                                           0])
                self.ocp_solver.constraints_set(n, "ubx", self.x_bound_max[:,
                                                                           0])
            else:
                self.ocp_solver.constraints_set(n, "lbx", self.x_bound_min[:,
                                                                           1])
                self.ocp_solver.constraints_set(n, "ubx", self.x_bound_max[:,
                                                                           1])

        if self.y_ref_end:
            if len(self.y_ref_end) == 1:
                self.ocp_solver.cost_set(self.acados_ocp.dims.N, "yref",
                                         np.array(self.y_ref_end[0])[:, 0])
            else:
                self.ocp_solver.cost_set(self.acados_ocp.dims.N, "yref",
                                         np.concatenate(self.y_ref_end)[:, 0])
            # check following line
            # self.ocp_solver.cost_set(self.acados_ocp.dims.N, "W", self.W_e)
        self.ocp_solver.constraints_set(self.acados_ocp.dims.N, "lbx",
                                        self.x_bound_min[:, -1])
        self.ocp_solver.constraints_set(self.acados_ocp.dims.N, "ubx",
                                        self.x_bound_max[:, -1])
        if len(self.end_g_bounds.max[:, 0]):
            self.ocp_solver.constraints_set(self.acados_ocp.dims.N, "uh",
                                            self.end_g_bounds.max[:, 0])
            self.ocp_solver.constraints_set(self.acados_ocp.dims.N, "lh",
                                            self.end_g_bounds.min[:, 0])

        if self.ocp.nlp[0].x_init.init.shape[1] == self.acados_ocp.dims.N + 1:
            if self.nparams:
                self.ocp_solver.set(
                    self.acados_ocp.dims.N,
                    "x",
                    np.concatenate(
                        (self.params_initial_guess.init[:, 0],
                         self.ocp.nlp[0].x_init.init[:,
                                                     self.acados_ocp.dims.N])),
                )
            else:
                self.ocp_solver.set(
                    self.acados_ocp.dims.N, "x",
                    self.ocp.nlp[0].x_init.init[:, self.acados_ocp.dims.N])

    def online_optim(self, ocp):
        raise NotImplementedError(
            "online_optim is not implemented yet with ACADOS backend")

    def get_optimized_value(self) -> Union[list, dict]:
        """
        Get the previously optimized solution

        Returns
        -------
        A solution or a list of solution depending on the number of phases
        """

        ns = self.acados_ocp.dims.N
        n_params = self.ocp.nlp[0].parameters.shape
        acados_x = np.array(
            [self.ocp_solver.get(i, "x") for i in range(ns + 1)]).T
        acados_p = acados_x[:n_params, :]
        acados_x = acados_x[n_params:, :]
        acados_u = np.array([self.ocp_solver.get(i, "u") for i in range(ns)]).T

        out = {
            "x": [],
            "u": acados_u,
            "solver_time_to_optimize":
            self.ocp_solver.get_stats("time_tot")[0],
            "real_time_to_optimize": self.real_time_to_optimize,
            "iter": self.ocp_solver.get_stats("sqp_iter")[0],
            "status": self.status,
            "solver": SolverType.ACADOS,
        }

        out["x"] = vertcat(out["x"], acados_x.reshape(-1, 1, order="F"))
        out["x"] = vertcat(out["x"], acados_u.reshape(-1, 1, order="F"))
        out["x"] = vertcat(out["x"], acados_p[:, 0])

        self.out["sol"] = out
        out = []
        for key in self.out.keys():
            out.append(self.out[key])
        return out[0] if len(out) == 1 else out

    def solve(self) -> Union[list, dict]:
        """
        Solve the prepared ocp

        Returns
        -------
        A reference to the solution
        """

        tic = perf_counter()
        # Populate costs and constraints vectors
        self.__set_costs(self.ocp)
        self.__set_constraints(self.ocp)

        options = self.opts.as_dict(self)
        if self.ocp_solver is None:
            for key in options:
                setattr(self.acados_ocp.solver_options, key, options[key])
            self.ocp_solver = AcadosOcpSolver(self.acados_ocp,
                                              json_file="acados_ocp.json")
            self.opts.set_only_first_options_has_changed(False)
            self.opts.set_has_tolerance_changed(False)

        else:
            if self.opts.only_first_options_has_changed:
                raise RuntimeError(
                    "Some options has been changed the second time acados was run.",
                    "Only " + str(Solver.ACADOS.get_tolerance_keys()) +
                    " can be modified.",
                )

            if self.opts.has_tolerance_changed:
                for key in self.opts.get_tolerance_keys():
                    short_key = key[12:]
                    self.ocp_solver.options_set(short_key, options[key[1:]])
                self.opts.set_has_tolerance_changed(False)

        self.__update_solver()

        self.status = self.ocp_solver.solve()
        self.real_time_to_optimize = perf_counter() - tic

        return self.get_optimized_value()
acados_path = get_acados_path()
json_path = os.path.join(acados_path,
                         'interfaces/acados_template/acados_template')
with open(json_path + '/simulink_default_opts.json', 'r') as f:
    simulink_opts = json.load(f)
ocp_solver = AcadosOcpSolver(ocp,
                             json_file='acados_ocp.json',
                             simulink_opts=simulink_opts)

# ocp_solver = AcadosOcpSolver(ocp, json_file = 'acados_ocp.json')

simX = np.ndarray((N + 1, nx))
simU = np.ndarray((N, nu))

# change options after creating ocp_solver
ocp_solver.options_set("step_length", 0.99999)
ocp_solver.options_set("globalization",
                       "fixed_step")  # fixed_step, merit_backtracking
ocp_solver.options_set("tol_eq", 1e-2)
ocp_solver.options_set("tol_stat", 1e-2)
ocp_solver.options_set("tol_ineq", 1e-2)
ocp_solver.options_set("tol_comp", 1e-2)

# initialize solver
for i in range(N):
    ocp_solver.set(i, "x", x0)
status = ocp_solver.solve()

if status not in [0, 2]:
    raise Exception('acados returned status {}. Exiting.'.format(status))
示例#3
0
def main(interface_type='ctypes'):

    # create ocp object to formulate the OCP
    ocp = AcadosOcp()

    # set model
    model = export_pendulum_ode_model()
    ocp.model = model

    nx = model.x.size()[0]
    nu = model.u.size()[0]
    ny = nx + nu
    ny_e = nx

    # define the different options for the use-case demonstration
    N0 = 20  # original number of shooting nodes
    N12 = 15  # change the number of shooting nodes for use-cases 1 and 2
    condN12 = max(1, round(N12/1)) # change the number of cond_N for use-cases 1 and 2 (for PARTIAL_* solvers only)
    Tf_01 = 1.0  # original final time and for use-case 1
    Tf_2 = Tf_01 * 0.7  # change final time for use-case 2 (but keep N identical)

    # set dimensions
    ocp.dims.N = N0

    # set cost
    Q = 2 * np.diag([1e3, 1e3, 1e-2, 1e-2])
    R = 2 * np.diag([1e-2])

    ocp.cost.W_e = Q
    ocp.cost.W = scipy.linalg.block_diag(Q, R)

    ocp.cost.cost_type = 'LINEAR_LS'
    ocp.cost.cost_type_e = 'LINEAR_LS'

    ocp.cost.Vx = np.zeros((ny, nx))
    ocp.cost.Vx[:nx, :nx] = np.eye(nx)

    Vu = np.zeros((ny, nu))
    Vu[4, 0] = 1.0
    ocp.cost.Vu = Vu

    ocp.cost.Vx_e = np.eye(nx)

    ocp.cost.yref = np.zeros((ny,))
    ocp.cost.yref_e = np.zeros((ny_e,))

    # set constraints
    Fmax = 80
    ocp.constraints.lbu = np.array([-Fmax])
    ocp.constraints.ubu = np.array([+Fmax])
    ocp.constraints.idxbu = np.array([0])

    ocp.constraints.x0 = np.array([0.0, np.pi, 0.0, 0.0])

    # set options
    ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM'  # FULL_CONDENSING_QPOASES
    # PARTIAL_CONDENSING_HPIPM, FULL_CONDENSING_QPOASES, FULL_CONDENSING_HPIPM,
    # PARTIAL_CONDENSING_QPDUNES, PARTIAL_CONDENSING_OSQP
    ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
    ocp.solver_options.integrator_type = 'ERK'
    # ocp.solver_options.print_level = 1
    ocp.solver_options.nlp_solver_type = 'SQP'  # SQP_RTI, SQP

    # set prediction horizon
    ocp.solver_options.tf = Tf_01

    print(80*'-')
    print('generate code and compile...')

    if interface_type == 'cython':
        AcadosOcpSolver.generate(ocp, json_file='acados_ocp.json')
        AcadosOcpSolver.build(ocp.code_export_directory, with_cython=True)
        ocp_solver = AcadosOcpSolver.create_cython_solver('acados_ocp.json')
    elif interface_type == 'ctypes':
        ocp_solver = AcadosOcpSolver(ocp, json_file='acados_ocp.json')
    elif interface_type == 'cython_prebuilt':
        from c_generated_code.acados_ocp_solver_pyx import AcadosOcpSolverCython
        ocp_solver = AcadosOcpSolverCython(ocp.model.name, ocp.solver_options.nlp_solver_type, ocp.dims.N)


    # test setting HPIPM options
    ocp_solver.options_set('qp_tol_ineq', 1e-8)
    ocp_solver.options_set('qp_tau_min', 1e-10)
    ocp_solver.options_set('qp_mu0', 1e0)

    # --------------------------------------------------------------------------------
    # 0) solve the problem defined here (original from code export), analog to 'minimal_example_ocp.py'
    nvariant = 0
    simX0 = np.ndarray((N0 + 1, nx))
    simU0 = np.ndarray((N0, nu))

    print(80*'-')
    print(f'solve original code with N = {N0} and Tf = {Tf_01} s:')
    status = ocp_solver.solve()

    if status != 0:
        ocp_solver.print_statistics()  # encapsulates: stat = ocp_solver.get_stats("statistics")
        raise Exception(f'acados returned status {status}.')

    # get solution
    for i in range(N0):
        simX0[i, :] = ocp_solver.get(i, "x")
        simU0[i, :] = ocp_solver.get(i, "u")
    simX0[N0, :] = ocp_solver.get(N0, "x")

    ocp_solver.print_statistics()  # encapsulates: stat = ocp_solver.get_stats("statistics")
    ocp_solver.store_iterate(filename=f'final_iterate_{interface_type}_variant{nvariant}.json', overwrite=True)

    if PLOT:# plot but don't halt
        plot_pendulum(np.linspace(0, Tf_01, N0 + 1), Fmax, simU0, simX0, latexify=False, plt_show=False, X_true_label=f'original: N={N0}, Tf={Tf_01}')
示例#4
0
def solve_marathos_ocp(setting):

    globalization = setting['globalization']
    line_search_use_sufficient_descent = setting[
        'line_search_use_sufficient_descent']
    globalization_use_SOC = setting['globalization_use_SOC']
    qp_solver = setting['qp_solver']

    # create ocp object to formulate the OCP
    ocp = AcadosOcp()

    # set model
    model = export_linear_mass_model()
    ocp.model = model

    nx = model.x.size()[0]
    nu = model.u.size()[0]
    ny = nu

    # discretization
    Tf = 2
    N = 20
    shooting_nodes = np.linspace(0, Tf, N + 1)
    ocp.dims.N = N

    # set cost
    Q = 2 * np.diag([])
    R = 2 * np.diag([1e1, 1e1])

    ocp.cost.W_e = Q
    ocp.cost.W = scipy.linalg.block_diag(Q, R)

    ocp.cost.cost_type = 'LINEAR_LS'
    ocp.cost.cost_type_e = 'LINEAR_LS'

    ocp.cost.Vx = np.zeros((ny, nx))

    Vu = np.eye((nu))
    ocp.cost.Vu = Vu
    ocp.cost.yref = np.zeros((ny, ))

    # set constraints
    Fmax = 5
    ocp.constraints.lbu = -Fmax * np.ones((nu, ))
    ocp.constraints.ubu = +Fmax * np.ones((nu, ))
    ocp.constraints.idxbu = np.array(range(nu))
    x0 = np.array([1e-1, 1.1, 0, 0])
    ocp.constraints.x0 = x0

    # terminal constraint
    x_goal = np.array([0, -1.1, 0, 0])
    ocp.constraints.idxbx_e = np.array(range(nx))
    ocp.constraints.lbx_e = x_goal
    ocp.constraints.ubx_e = x_goal

    if SOFTEN_TERMINAL:
        ocp.constraints.idxsbx_e = np.array(range(nx))
        ocp.cost.zl_e = 1e4 * np.ones(nx)
        ocp.cost.zu_e = 1e4 * np.ones(nx)
        ocp.cost.Zl_e = 1e6 * np.ones(nx)
        ocp.cost.Zu_e = 1e6 * np.ones(nx)

    # add obstacle
    if OBSTACLE:
        obs_rad = 1.0
        obs_x = 0.0
        obs_y = 0.0
        circle = (obs_x, obs_y, obs_rad)
        ocp.constraints.uh = np.array([100.0])  # doenst matter
        ocp.constraints.lh = np.array([obs_rad**2])
        x_square = model.x[0]**OBSTACLE_POWER + model.x[1]**OBSTACLE_POWER
        ocp.model.con_h_expr = x_square
        # copy for terminal
        ocp.constraints.uh_e = ocp.constraints.uh
        ocp.constraints.lh_e = ocp.constraints.lh
        ocp.model.con_h_expr_e = ocp.model.con_h_expr
    else:
        circle = None

    # soften
    if OBSTACLE and SOFTEN_OBSTACLE:
        ocp.constraints.idxsh = np.array([0])
        ocp.constraints.idxsh_e = np.array([0])
        Zh = 1e6 * np.ones(1)
        zh = 1e4 * np.ones(1)
        ocp.cost.zl = zh
        ocp.cost.zu = zh
        ocp.cost.Zl = Zh
        ocp.cost.Zu = Zh
        ocp.cost.zl_e = np.concatenate((ocp.cost.zl_e, zh))
        ocp.cost.zu_e = np.concatenate((ocp.cost.zu_e, zh))
        ocp.cost.Zl_e = np.concatenate((ocp.cost.Zl_e, Zh))
        ocp.cost.Zu_e = np.concatenate((ocp.cost.Zu_e, Zh))

    # set options
    ocp.solver_options.qp_solver = qp_solver  # FULL_CONDENSING_QPOASES
    # PARTIAL_CONDENSING_HPIPM, FULL_CONDENSING_QPOASES, FULL_CONDENSING_HPIPM,
    # PARTIAL_CONDENSING_QPDUNES, PARTIAL_CONDENSING_OSQP
    ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
    ocp.solver_options.integrator_type = 'ERK'
    # ocp.solver_options.print_level = 1
    ocp.solver_options.nlp_solver_type = 'SQP'  # SQP_RTI, SQP
    ocp.solver_options.globalization = globalization
    ocp.solver_options.alpha_min = 0.01
    # ocp.solver_options.__initialize_t_slacks = 0
    # ocp.solver_options.levenberg_marquardt = 1e-2
    ocp.solver_options.qp_solver_cond_N = 0
    ocp.solver_options.print_level = 1
    ocp.solver_options.nlp_solver_max_iter = 200
    ocp.solver_options.qp_solver_iter_max = 400
    # NOTE: this is needed for PARTIAL_CONDENSING_HPIPM to get expected behavior
    qp_tol = 5e-7
    ocp.solver_options.qp_solver_tol_stat = qp_tol
    ocp.solver_options.qp_solver_tol_eq = qp_tol
    ocp.solver_options.qp_solver_tol_ineq = qp_tol
    ocp.solver_options.qp_solver_tol_comp = qp_tol
    ocp.solver_options.qp_solver_ric_alg = 1
    # ocp.solver_options.qp_solver_cond_ric_alg = 1

    # set prediction horizon
    ocp.solver_options.tf = Tf

    ocp_solver = AcadosOcpSolver(ocp, json_file=f'{model.name}_ocp.json')
    ocp_solver.options_set('line_search_use_sufficient_descent',
                           line_search_use_sufficient_descent)
    ocp_solver.options_set('globalization_use_SOC', globalization_use_SOC)
    ocp_solver.options_set('full_step_dual', 1)

    if INITIALIZE:  # initialize solver
        # [ocp_solver.set(i, "x", x0 + (i/N) * (x_goal-x0)) for i in range(N+1)]
        [ocp_solver.set(i, "x", x0) for i in range(N + 1)]
        # [ocp_solver.set(i, "u", 2*(np.random.rand(2) - 0.5)) for i in range(N)]

    # solve
    status = ocp_solver.solve()
    ocp_solver.print_statistics(
    )  # encapsulates: stat = ocp_solver.get_stats("statistics")
    sqp_iter = ocp_solver.get_stats('sqp_iter')[0]
    print(f'acados returned status {status}.')

    # ocp_solver.store_iterate(f'it{ocp.solver_options.nlp_solver_max_iter}_{model.name}.json')

    # get solution
    simX = np.array([ocp_solver.get(i, "x") for i in range(N + 1)])
    simU = np.array([ocp_solver.get(i, "u") for i in range(N)])
    pi_multiplier = [ocp_solver.get(i, "pi") for i in range(N)]
    print(f"cost function value = {ocp_solver.get_cost()}")

    # print summary
    print(f"solved Marathos test problem with settings {setting}")
    print(
        f"cost function value = {ocp_solver.get_cost()} after {sqp_iter} SQP iterations"
    )
    # print(f"alphas: {alphas[:iter]}")
    # print(f"total number of QP iterations: {sum(qp_iters[:iter])}")
    # max_infeasibility = np.max(residuals[1:3])
    # print(f"max infeasibility: {max_infeasibility}")

    # checks
    if status != 0:
        raise Exception(f"acados solver returned status {status} != 0.")
    if globalization == "FIXED_STEP":
        if sqp_iter != 18:
            raise Exception(
                f"acados solver took {sqp_iter} iterations, expected 18.")
    elif globalization == "MERIT_BACKTRACKING":
        if globalization_use_SOC == 1 and line_search_use_sufficient_descent == 0 and sqp_iter not in range(
                21, 23):
            raise Exception(
                f"acados solver took {sqp_iter} iterations, expected range(21, 23)."
            )
        elif globalization_use_SOC == 1 and line_search_use_sufficient_descent == 1 and sqp_iter not in range(
                21, 24):
            raise Exception(
                f"acados solver took {sqp_iter} iterations, expected range(21, 24)."
            )
        elif globalization_use_SOC == 0 and line_search_use_sufficient_descent == 0 and sqp_iter not in range(
                155, 165):
            raise Exception(
                f"acados solver took {sqp_iter} iterations, expected range(155, 165)."
            )
        elif globalization_use_SOC == 0 and line_search_use_sufficient_descent == 1 and sqp_iter not in range(
                160, 175):
            raise Exception(
                f"acados solver took {sqp_iter} iterations, expected range(160, 175)."
            )

    if PLOT:
        plot_linear_mass_system_X_state_space(simX,
                                              circle=circle,
                                              x_goal=x_goal)
        plot_linear_mass_system_U(shooting_nodes, simU)
        # plot_linear_mass_system_X(shooting_nodes, simX)

    # import pdb; pdb.set_trace()
    print(f"\n\n----------------------\n")
示例#5
0
# set options
ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM'  # FULL_CONDENSING_QPOASES
# PARTIAL_CONDENSING_HPIPM, FULL_CONDENSING_QPOASES, FULL_CONDENSING_HPIPM,
# PARTIAL_CONDENSING_QPDUNES, PARTIAL_CONDENSING_OSQP
# ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
ocp.solver_options.integrator_type = 'ERK'
# ocp.solver_options.print_level = 1
ocp.solver_options.nlp_solver_type = 'SQP'  # SQP_RTI, SQP
ocp.solver_options.globalization = 'MERIT_BACKTRACKING'
ocp.solver_options.nlp_solver_max_iter = 500

# set prediction horizon
ocp.solver_options.tf = Tf

ocp_solver = AcadosOcpSolver(ocp, json_file='acados_ocp.json')
ocp_solver.options_set("line_search_use_sufficient_descent", 0)
ocp_solver.options_set("full_step_dual", 1)

simX = np.ndarray((N + 1, nx))
simU = np.ndarray((N, nu))

for i, tau in enumerate(np.linspace(0, 1, N + 1)):
    ocp_solver.set(i, 'x', x0 * (1 - tau) + tau * xf)
status = ocp_solver.solve()

if status != 0:
    ocp_solver.print_statistics(
    )  # encapsulates: stat = ocp_solver.get_stats("statistics")
    # raise Exception('acados returned status {}. Exiting.'.format(status))

# get solution
示例#6
0
def main(discretization='shooting_nodes'):
    # create ocp object to formulate the OCP
    ocp = AcadosOcp()

    # set model
    model = export_pendulum_ode_model()
    ocp.model = model

    integrator_type = 'LIFTED_IRK'  # ERK, IRK, GNSF, LIFTED_IRK

    if integrator_type == 'GNSF':
        acados_dae_model_json_dump(model)
        # structure detection in Matlab/Octave -> produces 'pendulum_ode_gnsf_functions.json'
        status = os.system('octave detect_gnsf_from_json.m')
        # load gnsf from json
        with open(model.name + '_gnsf_functions.json', 'r') as f:
            gnsf_dict = json.load(f)
        ocp.gnsf_model = gnsf_dict

    Tf = 1.0
    nx = model.x.size()[0]
    nu = model.u.size()[0]
    ny = nx + nu
    ny_e = nx
    N = 15

    # discretization
    ocp.dims.N = N
    # shooting_nodes = np.linspace(0, Tf, N+1)

    time_steps = np.linspace(0, 1, N)
    time_steps = Tf * time_steps / sum(time_steps)

    shooting_nodes = np.zeros((N + 1, ))
    for i in range(len(time_steps)):
        shooting_nodes[i + 1] = shooting_nodes[i] + time_steps[i]

    # nonuniform discretizations can be defined either by shooting_nodes or time_steps:
    if discretization == 'shooting_nodes':
        ocp.solver_options.shooting_nodes = shooting_nodes
    elif discretization == 'time_steps':
        ocp.solver_options.time_steps = time_steps
    else:
        raise NotImplementedError(
            f"discretization type {discretization} not supported.")

    # set num_steps
    ocp.solver_options.sim_method_num_steps = 2 * np.ones((N, ))
    ocp.solver_options.sim_method_num_steps[0] = 3

    # set num_stages
    ocp.solver_options.sim_method_num_stages = 2 * np.ones((N, ))
    ocp.solver_options.sim_method_num_stages[0] = 4

    # set cost
    Q = 2 * np.diag([1e3, 1e3, 1e-2, 1e-2])
    R = 2 * np.diag([1e-2])

    ocp.cost.W_e = Q
    ocp.cost.W = scipy.linalg.block_diag(Q, R)

    ocp.cost.cost_type = 'LINEAR_LS'
    ocp.cost.cost_type_e = 'LINEAR_LS'

    ocp.cost.Vx = np.zeros((ny, nx))
    ocp.cost.Vx[:nx, :nx] = np.eye(nx)

    Vu = np.zeros((ny, nu))
    Vu[4, 0] = 1.0
    ocp.cost.Vu = Vu

    ocp.cost.Vx_e = np.eye(nx)

    ocp.cost.yref = np.zeros((ny, ))
    ocp.cost.yref_e = np.zeros((ny_e, ))

    # set constraints
    Fmax = 80
    ocp.constraints.lbu = np.array([-Fmax])
    ocp.constraints.ubu = np.array([+Fmax])

    x0 = np.array([0.0, np.pi, 0.0, 0.0])
    ocp.constraints.x0 = x0
    ocp.constraints.idxbu = np.array([0])

    ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM'  # FULL_CONDENSING_QPOASES
    ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
    ocp.solver_options.integrator_type = integrator_type
    ocp.solver_options.print_level = 0
    ocp.solver_options.nlp_solver_type = 'SQP'  # SQP_RTI, SQP

    # set prediction horizon
    ocp.solver_options.tf = Tf
    ocp.solver_options.initialize_t_slacks = 1

    # Set additional options for Simulink interface:
    acados_path = get_acados_path()
    json_path = os.path.join(acados_path,
                             'interfaces/acados_template/acados_template')
    with open(json_path + '/simulink_default_opts.json', 'r') as f:
        simulink_opts = json.load(f)
    ocp_solver = AcadosOcpSolver(ocp,
                                 json_file='acados_ocp.json',
                                 simulink_opts=simulink_opts)

    # ocp_solver = AcadosOcpSolver(ocp, json_file = 'acados_ocp.json')

    simX = np.ndarray((N + 1, nx))
    simU = np.ndarray((N, nu))

    # change options after creating ocp_solver
    ocp_solver.options_set("step_length", 0.99999)
    ocp_solver.options_set("globalization",
                           "fixed_step")  # fixed_step, merit_backtracking
    ocp_solver.options_set("tol_eq", TOL)
    ocp_solver.options_set("tol_stat", TOL)
    ocp_solver.options_set("tol_ineq", TOL)
    ocp_solver.options_set("tol_comp", TOL)

    # initialize solver
    for i in range(N):
        ocp_solver.set(i, "x", x0)
    status = ocp_solver.solve()

    if status not in [0, 2]:
        raise Exception('acados returned status {}. Exiting.'.format(status))

    # get primal solution
    for i in range(N):
        simX[i, :] = ocp_solver.get(i, "x")
        simU[i, :] = ocp_solver.get(i, "u")
    simX[N, :] = ocp_solver.get(N, "x")

    print("inequality multipliers at stage 1")
    print(ocp_solver.get(1, "lam"))  # inequality multipliers at stage 1
    print("slack values at stage 1")
    print(ocp_solver.get(1, "t"))  # slack values at stage 1
    print("multipliers of dynamic conditions between stage 1 and 2")
    print(ocp_solver.get(
        1, "pi"))  # multipliers of dynamic conditions between stage 1 and 2

    # initialize ineq multipliers and slacks at stage 1
    ocp_solver.set(1, "lam", np.zeros(2, ))
    ocp_solver.set(1, "t", np.zeros(2, ))

    ocp_solver.print_statistics(
    )  # encapsulates: stat = ocp_solver.get_stats("statistics")

    # timings
    time_tot = ocp_solver.get_stats("time_tot")
    time_lin = ocp_solver.get_stats("time_lin")
    time_sim = ocp_solver.get_stats("time_sim")
    time_qp = ocp_solver.get_stats("time_qp")

    print(
        f"timings OCP solver: total: {1e3*time_tot}ms, lin: {1e3*time_lin}ms, sim: {1e3*time_sim}ms, qp: {1e3*time_qp}ms"
    )
    # print("simU", simU)
    # print("simX", simX)
    iterate_filename = f'final_iterate_{discretization}.json'
    ocp_solver.store_iterate(filename=iterate_filename, overwrite=True)

    plot_pendulum(shooting_nodes, Fmax, simU, simX, latexify=False)
    del ocp_solver
ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM'  # FULL_CONDENSING_QPOASES
ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
ocp.solver_options.integrator_type = 'ERK'
ocp.solver_options.print_level = 0
ocp.solver_options.nlp_solver_type = 'SQP'  # SQP_RTI, SQP

# set prediction horizon
ocp.solver_options.tf = Tf

ocp_solver = AcadosOcpSolver(ocp, json_file='acados_ocp.json')

simX = np.ndarray((N + 1, nx))
simU = np.ndarray((N, nu))

ocp_solver.options_set("step_length", 0.99999)
ocp_solver.options_set("globalization",
                       "fixed_step")  # fixed_step, merit_backtracking

# initialize solver
for i in range(N):
    ocp_solver.set(i, "x", x0)
status = ocp_solver.solve()

if status not in [0, 2]:
    raise Exception('acados returned status {}. Exiting.'.format(status))

# get primal solution
for i in range(N):
    simX[i, :] = ocp_solver.get(i, "x")
    simU[i, :] = ocp_solver.get(i, "u")