示例#1
0
class DistributedTrainer(Callback):
    "Wrap `model` in `DistributedDataParallel` and `dls` in `DistributedDL`"
    order = 11

    @delegates(Accelerator, but=_hidden_params)
    def __init__(
            self,
            sync_bn=True,  # Whether to replace all batch norm with `nn.SyncBatchNorm`
            **kwargs):
        store_attr()
        self.accelerator = Accelerator(**kwargs)

    def before_fit(self):
        self.learn.model = self.accelerator.prepare(
            nn.SyncBatchNorm.convert_sync_batchnorm(self.model) if self.
            sync_bn else self.model)
        self.old_dls = list(self.dls)
        self.learn.dls.loaders = [self._wrap_dl(dl) for dl in self.dls]
        if rank_distrib(): self.learn.logger = noop

    def _wrap_dl(self, dl):
        return dl if isinstance(dl, DistributedDL) else DistributedDL(dl)

    def _backward(self):
        self.accelerator.backward(self.learn.loss_grad)

    def before_train(self):
        self.learn.dl = self._wrap_dl(self.learn.dl)

    def before_validate(self):
        self.learn.dl = self._wrap_dl(self.learn.dl)

    def after_fit(self):
        self.learn.model, self.learn.dls.loaders = self.learn.model.module, self.old_dls
def main(args: Config):
    """"""
    accelerator = Accelerator()
    logger.info(f'accelerator state:\n{accelerator.state}')

    # 设置随机数
    set_random_seed(args)

    # 模型准备
    logger.info('***** Model prepare *****')
    model, tokenizer = model_prepare(args)

    # 数据准备
    logger.info('***** Data prepare *****')
    train_dl, val_dl = data_prepare(args, tokenizer)

    # 优化器准备
    logger.info('***** Optimizer prepare *****')
    optimizer = optimizer_prepare(args, model)

    # accelerator prepare
    model, optimizer, train_dl, val_dl = accelerator.prepare(
        model, optimizer, train_dl, val_dl)

    # prepare lr_scheduler
    num_update_steps_per_epoch = math.ceil(
        len(train_dl) / args.gradient_accumulation_steps)
    args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # train
    logger.info("***** Start training *****")
    train(args, model, optimizer, train_dl, val_dl, accelerator, lr_scheduler)

    # 模型保存
    logger.info("***** Model save *****")
    model_save(args, accelerator, model, tokenizer)
示例#3
0
def main():
    args = parse_args()

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    accelerator = Accelerator()
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state)

    # Setup logging, we only want one process per machine to log things on the screen.
    # accelerator.is_local_main_process is only True for one process per machine.
    logger.setLevel(
        logging.INFO if accelerator.is_local_main_process else logging.ERROR)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(args.dataset_name,
                                    args.dataset_config_name)
    else:
        data_files = {}
        if args.train_file is not None:
            data_files["train"] = args.train_file
        if args.validation_file is not None:
            data_files["validation"] = args.validation_file
        if args.test_file is not None:
            data_files["test"] = args.test_file
        extension = args.train_file.split(".")[-1]
        raw_datasets = load_dataset(extension,
                                    data_files=data_files,
                                    field="data")
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    if args.config_name:
        config = AutoConfig.from_pretrained(args.config_name)
    elif args.model_name_or_path:
        config = AutoConfig.from_pretrained(args.model_name_or_path)
    else:
        config = CONFIG_MAPPING[args.model_type]()
        logger.warning(
            "You are instantiating a new config instance from scratch.")

    if args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name,
                                                  use_fast=True)
    elif args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path,
                                                  use_fast=True)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if args.model_name_or_path:
        model = AutoModelForQuestionAnswering.from_pretrained(
            args.model_name_or_path,
            from_tf=bool(".ckpt" in args.model_name_or_path),
            config=config,
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForQuestionAnswering.from_config(config)

    # Preprocessing the datasets.
    # Preprocessing is slighlty different for training and evaluation.

    column_names = raw_datasets["train"].column_names

    question_column_name = "question" if "question" in column_names else column_names[
        0]
    context_column_name = "context" if "context" in column_names else column_names[
        1]
    answer_column_name = "answers" if "answers" in column_names else column_names[
        2]

    # Padding side determines if we do (question|context) or (context|question).
    pad_on_right = tokenizer.padding_side == "right"

    if args.max_seq_length > tokenizer.model_max_length:
        logger.warning(
            f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )

    max_seq_length = min(args.max_seq_length, tokenizer.model_max_length)

    # Training preprocessing
    def prepare_train_features(examples):
        # Some of the questions have lots of whitespace on the left, which is not useful and will make the
        # truncation of the context fail (the tokenized question will take a lots of space). So we remove that
        # left whitespace
        examples[question_column_name] = [
            q.lstrip() for q in examples[question_column_name]
        ]

        # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
        # in one example possible giving several features when a context is long, each of those features having a
        # context that overlaps a bit the context of the previous feature.
        tokenized_examples = tokenizer(
            examples[
                question_column_name if pad_on_right else context_column_name],
            examples[
                context_column_name if pad_on_right else question_column_name],
            truncation="only_second" if pad_on_right else "only_first",
            max_length=max_seq_length,
            stride=args.doc_stride,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            padding="max_length" if args.pad_to_max_length else False,
        )

        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
        # The offset mappings will give us a map from token to character position in the original context. This will
        # help us compute the start_positions and end_positions.
        offset_mapping = tokenized_examples.pop("offset_mapping")

        # Let's label those examples!
        tokenized_examples["start_positions"] = []
        tokenized_examples["end_positions"] = []

        for i, offsets in enumerate(offset_mapping):
            # We will label impossible answers with the index of the CLS token.
            input_ids = tokenized_examples["input_ids"][i]
            cls_index = input_ids.index(tokenizer.cls_token_id)

            # Grab the sequence corresponding to that example (to know what is the context and what is the question).
            sequence_ids = tokenized_examples.sequence_ids(i)

            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            answers = examples[answer_column_name][sample_index]
            # If no answers are given, set the cls_index as answer.
            if len(answers["answer_start"]) == 0:
                tokenized_examples["start_positions"].append(cls_index)
                tokenized_examples["end_positions"].append(cls_index)
            else:
                # Start/end character index of the answer in the text.
                start_char = answers["answer_start"][0]
                end_char = start_char + len(answers["text"][0])

                # Start token index of the current span in the text.
                token_start_index = 0
                while sequence_ids[token_start_index] != (1 if pad_on_right
                                                          else 0):
                    token_start_index += 1

                # End token index of the current span in the text.
                token_end_index = len(input_ids) - 1
                while sequence_ids[token_end_index] != (1 if pad_on_right else
                                                        0):
                    token_end_index -= 1

                # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index).
                if not (offsets[token_start_index][0] <= start_char
                        and offsets[token_end_index][1] >= end_char):
                    tokenized_examples["start_positions"].append(cls_index)
                    tokenized_examples["end_positions"].append(cls_index)
                else:
                    # Otherwise move the token_start_index and token_end_index to the two ends of the answer.
                    # Note: we could go after the last offset if the answer is the last word (edge case).
                    while token_start_index < len(offsets) and offsets[
                            token_start_index][0] <= start_char:
                        token_start_index += 1
                    tokenized_examples["start_positions"].append(
                        token_start_index - 1)
                    while offsets[token_end_index][1] >= end_char:
                        token_end_index -= 1
                    tokenized_examples["end_positions"].append(
                        token_end_index + 1)

        return tokenized_examples

    if "train" not in raw_datasets:
        raise ValueError("--do_train requires a train dataset")
    train_dataset = raw_datasets["train"]
    if args.max_train_samples is not None:
        # We will select sample from whole data if agument is specified
        train_dataset = train_dataset.select(range(args.max_train_samples))
    # Create train feature from dataset
    train_dataset = train_dataset.map(
        prepare_train_features,
        batched=True,
        num_proc=args.preprocessing_num_workers,
        remove_columns=column_names,
        load_from_cache_file=not args.overwrite_cache,
        desc="Running tokenizer on train dataset",
    )
    if args.max_train_samples is not None:
        # Number of samples might increase during Feature Creation, We select only specified max samples
        train_dataset = train_dataset.select(range(args.max_train_samples))

    # Validation preprocessing
    def prepare_validation_features(examples):
        # Some of the questions have lots of whitespace on the left, which is not useful and will make the
        # truncation of the context fail (the tokenized question will take a lots of space). So we remove that
        # left whitespace
        examples[question_column_name] = [
            q.lstrip() for q in examples[question_column_name]
        ]

        # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
        # in one example possible giving several features when a context is long, each of those features having a
        # context that overlaps a bit the context of the previous feature.
        tokenized_examples = tokenizer(
            examples[
                question_column_name if pad_on_right else context_column_name],
            examples[
                context_column_name if pad_on_right else question_column_name],
            truncation="only_second" if pad_on_right else "only_first",
            max_length=max_seq_length,
            stride=args.doc_stride,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            padding="max_length" if args.pad_to_max_length else False,
        )

        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")

        # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
        # corresponding example_id and we will store the offset mappings.
        tokenized_examples["example_id"] = []

        for i in range(len(tokenized_examples["input_ids"])):
            # Grab the sequence corresponding to that example (to know what is the context and what is the question).
            sequence_ids = tokenized_examples.sequence_ids(i)
            context_index = 1 if pad_on_right else 0

            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            tokenized_examples["example_id"].append(
                examples["id"][sample_index])

            # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
            # position is part of the context or not.
            tokenized_examples["offset_mapping"][i] = [
                (o if sequence_ids[k] == context_index else None)
                for k, o in enumerate(tokenized_examples["offset_mapping"][i])
            ]

        return tokenized_examples

    if "validation" not in raw_datasets:
        raise ValueError("--do_eval requires a validation dataset")
    eval_examples = raw_datasets["validation"]
    if args.max_eval_samples is not None:
        # We will select sample from whole data
        eval_examples = eval_examples.select(range(args.max_eval_samples))
    # Validation Feature Creation
    eval_dataset = eval_examples.map(
        prepare_validation_features,
        batched=True,
        num_proc=args.preprocessing_num_workers,
        remove_columns=column_names,
        load_from_cache_file=not args.overwrite_cache,
        desc="Running tokenizer on validation dataset",
    )

    if args.max_eval_samples is not None:
        # During Feature creation dataset samples might increase, we will select required samples again
        eval_dataset = eval_dataset.select(range(args.max_eval_samples))

    if args.do_predict:
        if "test" not in raw_datasets:
            raise ValueError("--do_predict requires a test dataset")
        predict_examples = raw_datasets["test"]
        if args.max_predict_samples is not None:
            # We will select sample from whole data
            predict_examples = predict_examples.select(
                range(args.max_predict_samples))
        # Predict Feature Creation
        predict_dataset = predict_examples.map(
            prepare_validation_features,
            batched=True,
            num_proc=args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not args.overwrite_cache,
            desc="Running tokenizer on prediction dataset",
        )
        if args.max_predict_samples is not None:
            # During Feature creation dataset samples might increase, we will select required samples again
            predict_dataset = predict_dataset.select(
                range(args.max_predict_samples))

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(
            f"Sample {index} of the training set: {train_dataset[index]}.")

    # DataLoaders creation:
    if args.pad_to_max_length:
        # If padding was already done ot max length, we use the default data collator that will just convert everything
        # to tensors.
        data_collator = default_data_collator
    else:
        # Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of
        # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
        # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
        data_collator = DataCollatorWithPadding(
            tokenizer,
            pad_to_multiple_of=(8 if accelerator.use_fp16 else None))

    train_dataloader = DataLoader(train_dataset,
                                  shuffle=True,
                                  collate_fn=data_collator,
                                  batch_size=args.per_device_train_batch_size)

    eval_dataset_for_model = eval_dataset.remove_columns(
        ["example_id", "offset_mapping"])
    eval_dataloader = DataLoader(eval_dataset_for_model,
                                 collate_fn=data_collator,
                                 batch_size=args.per_device_eval_batch_size)

    if args.do_predict:
        predict_dataset_for_model = predict_dataset.remove_columns(
            ["example_id", "offset_mapping"])
        predict_dataloader = DataLoader(
            predict_dataset_for_model,
            collate_fn=data_collator,
            batch_size=args.per_device_eval_batch_size)

    # Post-processing:
    def post_processing_function(examples,
                                 features,
                                 predictions,
                                 stage="eval"):
        # Post-processing: we match the start logits and end logits to answers in the original context.
        predictions = postprocess_qa_predictions(
            examples=examples,
            features=features,
            predictions=predictions,
            version_2_with_negative=args.version_2_with_negative,
            n_best_size=args.n_best_size,
            max_answer_length=args.max_answer_length,
            null_score_diff_threshold=args.null_score_diff_threshold,
            output_dir=args.output_dir,
            prefix=stage,
        )
        # Format the result to the format the metric expects.
        if args.version_2_with_negative:
            formatted_predictions = [{
                "id": k,
                "prediction_text": v,
                "no_answer_probability": 0.0
            } for k, v in predictions.items()]
        else:
            formatted_predictions = [{
                "id": k,
                "prediction_text": v
            } for k, v in predictions.items()]

        references = [{
            "id": ex["id"],
            "answers": ex[answer_column_name]
        } for ex in examples]
        return EvalPrediction(predictions=formatted_predictions,
                              label_ids=references)

    metric = load_metric(
        "squad_v2" if args.version_2_with_negative else "squad")

    # Create and fill numpy array of size len_of_validation_data * max_length_of_output_tensor
    def create_and_fill_np_array(start_or_end_logits, dataset, max_len):
        """
        Create and fill numpy array of size len_of_validation_data * max_length_of_output_tensor

        Args:
            start_or_end_logits(:obj:`tensor`):
                This is the output predictions of the model. We can only enter either start or end logits.
            eval_dataset: Evaluation dataset
            max_len(:obj:`int`):
                The maximum length of the output tensor. ( See the model.eval() part for more details )
        """

        step = 0
        # create a numpy array and fill it with -100.
        logits_concat = np.full((len(dataset), max_len),
                                -100,
                                dtype=np.float64)
        # Now since we have create an array now we will populate it with the outputs gathered using accelerator.gather
        for i, output_logit in enumerate(
                start_or_end_logits):  # populate columns
            # We have to fill it such that we have to take the whole tensor and replace it on the newly created array
            # And after every iteration we have to change the step

            batch_size = output_logit.shape[0]
            cols = output_logit.shape[1]

            if step + batch_size < len(dataset):
                logits_concat[step:step + batch_size, :cols] = output_logit
            else:
                logits_concat[step:, :cols] = output_logit[:len(dataset) -
                                                           step]

            step += batch_size

        return logits_concat

    # Optimizer
    # Split weights in two groups, one with weight decay and the other not.
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            args.weight_decay,
        },
        {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0,
        },
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader)

    # Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
    # shorter in multiprocess)

    # Scheduler and math around the number of training steps.
    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    else:
        args.num_train_epochs = math.ceil(args.max_train_steps /
                                          num_update_steps_per_epoch)

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # Train!
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(
        f"  Instantaneous batch size per device = {args.per_device_train_batch_size}"
    )
    logger.info(
        f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
    )
    logger.info(
        f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")

    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps),
                        disable=not accelerator.is_local_main_process)
    completed_steps = 0

    for epoch in range(args.num_train_epochs):
        model.train()
        for step, batch in enumerate(train_dataloader):
            outputs = model(**batch)
            loss = outputs.loss
            loss = loss / args.gradient_accumulation_steps
            accelerator.backward(loss)
            if step % args.gradient_accumulation_steps == 0 or step == len(
                    train_dataloader) - 1:
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                completed_steps += 1

            if completed_steps >= args.max_train_steps:
                break

    # Evaluation
    logger.info("***** Running Evaluation *****")
    logger.info(f"  Num examples = {len(eval_dataset)}")
    logger.info(f"  Batch size = {args.per_device_eval_batch_size}")

    all_start_logits = []
    all_end_logits = []
    for step, batch in enumerate(eval_dataloader):
        with torch.no_grad():
            outputs = model(**batch)
            start_logits = outputs.start_logits
            end_logits = outputs.end_logits

            if not args.pad_to_max_length:  # necessary to pad predictions and labels for being gathered
                start_logits = accelerator.pad_across_processes(start_logits,
                                                                dim=1,
                                                                pad_index=-100)
                end_logits = accelerator.pad_across_processes(end_logits,
                                                              dim=1,
                                                              pad_index=-100)

            all_start_logits.append(
                accelerator.gather(start_logits).cpu().numpy())
            all_end_logits.append(accelerator.gather(end_logits).cpu().numpy())

    max_len = max([x.shape[1] for x in all_start_logits
                   ])  # Get the max_length of the tensor

    # concatenate the numpy array
    start_logits_concat = create_and_fill_np_array(all_start_logits,
                                                   eval_dataset, max_len)
    end_logits_concat = create_and_fill_np_array(all_end_logits, eval_dataset,
                                                 max_len)

    # delete the list of numpy arrays
    del all_start_logits
    del all_end_logits

    outputs_numpy = (start_logits_concat, end_logits_concat)
    prediction = post_processing_function(eval_examples, eval_dataset,
                                          outputs_numpy)
    eval_metric = metric.compute(predictions=prediction.predictions,
                                 references=prediction.label_ids)
    logger.info(f"Evaluation metrics: {eval_metric}")

    # Prediction
    if args.do_predict:
        logger.info("***** Running Prediction *****")
        logger.info(f"  Num examples = {len(predict_dataset)}")
        logger.info(f"  Batch size = {args.per_device_eval_batch_size}")

        all_start_logits = []
        all_end_logits = []
        for step, batch in enumerate(predict_dataloader):
            with torch.no_grad():
                outputs = model(**batch)
                start_logits = outputs.start_logits
                end_logits = outputs.end_logits

                if not args.pad_to_max_length:  # necessary to pad predictions and labels for being gathered
                    start_logits = accelerator.pad_across_processes(
                        start_logits, dim=1, pad_index=-100)
                    end_logits = accelerator.pad_across_processes(
                        start_logits, dim=1, pad_index=-100)

                all_start_logits.append(
                    accelerator.gather(start_logits).cpu().numpy())
                all_end_logits.append(
                    accelerator.gather(end_logits).cpu().numpy())

        max_len = max([x.shape[1] for x in all_start_logits
                       ])  # Get the max_length of the tensor
        # concatenate the numpy array
        start_logits_concat = create_and_fill_np_array(all_start_logits,
                                                       predict_dataset,
                                                       max_len)
        end_logits_concat = create_and_fill_np_array(all_end_logits,
                                                     predict_dataset, max_len)

        # delete the list of numpy arrays
        del all_start_logits
        del all_end_logits

        outputs_numpy = (start_logits_concat, end_logits_concat)
        prediction = post_processing_function(predict_examples,
                                              predict_dataset, outputs_numpy)
        predict_metric = metric.compute(predictions=prediction.predictions,
                                        references=prediction.label_ids)
        logger.info(f"Predict metrics: {predict_metric}")

    if args.output_dir is not None:
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(args.output_dir,
                                        save_function=accelerator.save)
示例#4
0
def training_check():
    state = AcceleratorState()
    generator = torch.Generator()
    batch_size = 8
    length = batch_size * 4 * state.num_processes

    train_set, old_model = mock_training(length,
                                         batch_size * state.num_processes,
                                         generator)
    assert are_the_same_tensors(old_model.a)
    assert are_the_same_tensors(old_model.b)

    accelerator = Accelerator()
    train_dl = DataLoader(train_set,
                          batch_size=batch_size,
                          shuffle=True,
                          generator=generator)
    model = RegressionModel()
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

    train_dl, model, optimizer = accelerator.prepare(train_dl, model,
                                                     optimizer)
    set_seed(42)
    generator.manual_seed(42)
    for epoch in range(3):
        for batch in train_dl:
            model.zero_grad()
            output = model(batch["x"])
            loss = torch.nn.functional.mse_loss(output, batch["y"])
            accelerator.backward(loss)
            optimizer.step()

    model = accelerator.unwrap_model(model).cpu()
    assert torch.allclose(old_model.a, model.a)
    assert torch.allclose(old_model.b, model.b)

    accelerator.print(
        "Training yielded the same results on one CPU or distributed setup with no batch split."
    )

    accelerator = Accelerator(split_batches=True)
    train_dl = DataLoader(train_set,
                          batch_size=batch_size * state.num_processes,
                          shuffle=True,
                          generator=generator)
    model = RegressionModel()
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

    train_dl, model, optimizer = accelerator.prepare(train_dl, model,
                                                     optimizer)
    set_seed(42)
    generator.manual_seed(42)
    for _ in range(3):
        for batch in train_dl:
            model.zero_grad()
            output = model(batch["x"])
            loss = torch.nn.functional.mse_loss(output, batch["y"])
            accelerator.backward(loss)
            optimizer.step()

    model = accelerator.unwrap_model(model).cpu()
    assert torch.allclose(old_model.a, model.a)
    assert torch.allclose(old_model.b, model.b)

    accelerator.print(
        "Training yielded the same results on one CPU or distributes setup with batch split."
    )

    # Mostly a test that FP16 doesn't crash as the operation inside the model is not converted to FP16
    accelerator = Accelerator(fp16=True)
    train_dl = DataLoader(train_set,
                          batch_size=batch_size,
                          shuffle=True,
                          generator=generator)
    model = RegressionModel()
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

    train_dl, model, optimizer = accelerator.prepare(train_dl, model,
                                                     optimizer)
    set_seed(42)
    generator.manual_seed(42)
    for _ in range(3):
        for batch in train_dl:
            model.zero_grad()
            output = model(batch["x"])
            loss = torch.nn.functional.mse_loss(output, batch["y"])
            accelerator.backward(loss)
            optimizer.step()

    model = accelerator.unwrap_model(model).cpu()
    assert torch.allclose(old_model.a, model.a)
    assert torch.allclose(old_model.b, model.b)
示例#5
0
def main():
    args = parse_args()

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    # If we're using tracking, we also need to initialize it here and it will pick up all supported trackers in the environment
    accelerator = Accelerator(
        log_with="all",
        logging_dir=args.output_dir) if args.with_tracking else Accelerator()
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state)

    # Setup logging, we only want one process per machine to log things on the screen.
    # accelerator.is_local_main_process is only True for one process per machine.
    logger.setLevel(
        logging.INFO if accelerator.is_local_main_process else logging.ERROR)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name,
                                               token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"),
                      "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(args.dataset_name,
                                    args.dataset_config_name)
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                args.dataset_name,
                args.dataset_config_name,
                split=f"train[:{args.validation_split_percentage}%]",
            )
            raw_datasets["train"] = load_dataset(
                args.dataset_name,
                args.dataset_config_name,
                split=f"train[{args.validation_split_percentage}%:]",
            )
    else:
        data_files = {}
        dataset_args = {}
        if args.train_file is not None:
            data_files["train"] = args.train_file
        if args.validation_file is not None:
            data_files["validation"] = args.validation_file
        extension = args.train_file.split(".")[-1]
        if extension == "txt":
            extension = "text"
            dataset_args["keep_linebreaks"] = not args.no_keep_linebreaks
        raw_datasets = load_dataset(extension,
                                    data_files=data_files,
                                    **dataset_args)
        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{args.validation_split_percentage}%]",
                **dataset_args,
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{args.validation_split_percentage}%:]",
                **dataset_args,
            )

    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if args.config_name:
        config = AutoConfig.from_pretrained(args.config_name)
    elif args.model_name_or_path:
        config = AutoConfig.from_pretrained(args.model_name_or_path)
    else:
        config = CONFIG_MAPPING[args.model_type]()
        logger.warning(
            "You are instantiating a new config instance from scratch.")

    if args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
            args.tokenizer_name, use_fast=not args.use_slow_tokenizer)
    elif args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if args.model_name_or_path:
        model = AutoModelForCausalLM.from_pretrained(
            args.model_name_or_path,
            from_tf=bool(".ckpt" in args.model_name_or_path),
            config=config,
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForCausalLM.from_config(config)

    model.resize_token_embeddings(len(tokenizer))

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    column_names = raw_datasets["train"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

    def tokenize_function(examples):
        return tokenizer(examples[text_column_name])

    with accelerator.main_process_first():
        tokenized_datasets = raw_datasets.map(
            tokenize_function,
            batched=True,
            num_proc=args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not args.overwrite_cache,
            desc="Running tokenizer on dataset",
        )

    if args.block_size is None:
        block_size = tokenizer.model_max_length
        if block_size > 1024:
            logger.warning(
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --block_size xxx."
            )
        block_size = 1024
    else:
        if args.block_size > tokenizer.model_max_length:
            logger.warning(
                f"The block_size passed ({args.block_size}) is larger than the maximum length for the model"
                f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
            )
        block_size = min(args.block_size, tokenizer.model_max_length)

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
    def group_texts(examples):
        # Concatenate all texts.
        concatenated_examples = {
            k: list(chain(*examples[k]))
            for k in examples.keys()
        }
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
        if total_length >= block_size:
            total_length = (total_length // block_size) * block_size
        # Split by chunks of max_len.
        result = {
            k:
            [t[i:i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
    # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
    # to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
    # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map

    with accelerator.main_process_first():
        lm_datasets = tokenized_datasets.map(
            group_texts,
            batched=True,
            num_proc=args.preprocessing_num_workers,
            load_from_cache_file=not args.overwrite_cache,
            desc=f"Grouping texts in chunks of {block_size}",
        )

    train_dataset = lm_datasets["train"]
    eval_dataset = lm_datasets["validation"]

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(
            f"Sample {index} of the training set: {train_dataset[index]}.")

    # DataLoaders creation:
    train_dataloader = DataLoader(train_dataset,
                                  shuffle=True,
                                  collate_fn=default_data_collator,
                                  batch_size=args.per_device_train_batch_size)
    eval_dataloader = DataLoader(eval_dataset,
                                 collate_fn=default_data_collator,
                                 batch_size=args.per_device_eval_batch_size)

    # Optimizer
    # Split weights in two groups, one with weight decay and the other not.
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            args.weight_decay,
        },
        {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0,
        },
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)

    # On TPU, the tie weights in our model have been disconnected, so we need to restore the ties.
    if accelerator.distributed_type == DistributedType.TPU:
        model.tie_weights()

    # Scheduler and math around the number of training steps.
    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    else:
        args.num_train_epochs = math.ceil(args.max_train_steps /
                                          num_update_steps_per_epoch)

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader, lr_scheduler)

    # Figure out how many steps we should save the Accelerator states
    if hasattr(args.checkpointing_steps, "isdigit"):
        checkpointing_steps = args.checkpointing_steps
        if args.checkpointing_steps.isdigit():
            checkpointing_steps = int(args.checkpointing_steps)
    else:
        checkpointing_steps = None

    # We need to initialize the trackers we use, and also store our configuration
    if args.with_tracking:
        experiment_config = vars(args)
        # TensorBoard cannot log Enums, need the raw value
        experiment_config["lr_scheduler_type"] = experiment_config[
            "lr_scheduler_type"].value
        accelerator.init_trackers("clm_no_trainer", experiment_config)

    # Train!
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(
        f"  Instantaneous batch size per device = {args.per_device_train_batch_size}"
    )
    logger.info(
        f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
    )
    logger.info(
        f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps),
                        disable=not accelerator.is_local_main_process)
    completed_steps = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
            accelerator.print(
                f"Resumed from checkpoint: {args.resume_from_checkpoint}")
            accelerator.load_state(args.resume_from_checkpoint)
            resume_step = None
            path = args.resume_from_checkpoint
        else:
            # Get the most recent checkpoint
            dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
            dirs.sort(key=os.path.getctime)
            path = dirs[
                -1]  # Sorts folders by date modified, most recent checkpoint is the last
        if "epoch" in path:
            args.num_train_epochs -= int(path.replace("epoch_", ""))
        else:
            resume_step = int(path.replace("step_", ""))
            args.num_train_epochs -= resume_step // len(train_dataloader)
            resume_step = (args.num_train_epochs *
                           len(train_dataloader)) - resume_step

    for epoch in range(args.num_train_epochs):
        model.train()
        if args.with_tracking:
            total_loss = 0
        for step, batch in enumerate(train_dataloader):
            # We need to skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == 0 and step < resume_step:
                continue
            outputs = model(**batch)
            loss = outputs.loss
            # We keep track of the loss at each epoch
            if args.with_tracking:
                total_loss += loss.detach().float()
            loss = loss / args.gradient_accumulation_steps
            accelerator.backward(loss)
            if step % args.gradient_accumulation_steps == 0 or step == len(
                    train_dataloader) - 1:
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                completed_steps += 1

            if isinstance(checkpointing_steps, int):
                if completed_steps % checkpointing_steps == 0:
                    output_dir = f"step_{completed_steps}"
                    if args.output_dir is not None:
                        output_dir = os.path.join(args.output_dir, output_dir)
                    accelerator.save_state(output_dir)
            if completed_steps >= args.max_train_steps:
                break

        model.eval()
        losses = []
        for step, batch in enumerate(eval_dataloader):
            with torch.no_grad():
                outputs = model(**batch)

            loss = outputs.loss
            losses.append(
                accelerator.gather(loss.repeat(
                    args.per_device_eval_batch_size)))

        losses = torch.cat(losses)
        losses = losses[:len(eval_dataset)]
        try:
            perplexity = math.exp(torch.mean(losses))
        except OverflowError:
            perplexity = float("inf")

        logger.info(f"epoch {epoch}: perplexity: {perplexity}")

        if args.with_tracking:
            accelerator.log(
                {
                    "perplexity": perplexity,
                    "train_loss": total_loss,
                    "epoch": epoch,
                    "step": completed_steps
                }, )

        if args.push_to_hub and epoch < args.num_train_epochs - 1:
            accelerator.wait_for_everyone()
            unwrapped_model = accelerator.unwrap_model(model)
            unwrapped_model.save_pretrained(args.output_dir,
                                            save_function=accelerator.save)
            if accelerator.is_main_process:
                tokenizer.save_pretrained(args.output_dir)
                repo.push_to_hub(
                    commit_message=f"Training in progress epoch {epoch}",
                    blocking=False,
                    auto_lfs_prune=True)

        if args.checkpointing_steps == "epoch":
            output_dir = f"epoch_{epoch}"
            if args.output_dir is not None:
                output_dir = os.path.join(args.output_dir, output_dir)
            accelerator.save_state(output_dir)

    if args.output_dir is not None:
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(args.output_dir,
                                        save_function=accelerator.save)
        if accelerator.is_main_process:
            tokenizer.save_pretrained(args.output_dir)
            if args.push_to_hub:
                repo.push_to_hub(commit_message="End of training",
                                 auto_lfs_prune=True)

        with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
            json.dump({"perplexity": perplexity}, f)
示例#6
0
def training_function(config, args):
    # Initialize accelerator
    accelerator = Accelerator(fp16=args.fp16, cpu=args.cpu)

    # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
    lr = config["lr"]
    num_epochs = int(config["num_epochs"])
    correct_bias = config["correct_bias"]
    seed = int(config["seed"])
    batch_size = int(config["batch_size"])

    tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
    datasets = load_dataset("glue", "mrpc")
    metric = load_metric("glue", "mrpc")

    def tokenize_function(examples):
        # max_length=None => use the model max length (it's actually the default)
        outputs = tokenizer(examples["sentence1"],
                            examples["sentence2"],
                            truncation=True,
                            max_length=None)
        return outputs

    # Apply the method we just defined to all the examples in all the splits of the dataset
    tokenized_datasets = datasets.map(
        tokenize_function,
        batched=True,
        remove_columns=["idx", "sentence1", "sentence2"],
    )

    # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
    # transformers library
    tokenized_datasets.rename_column_("label", "labels")

    # If the batch size is too big we use gradient accumulation
    gradient_accumulation_steps = 1
    if batch_size > MAX_GPU_BATCH_SIZE:
        gradient_accumulation_steps = batch_size // MAX_GPU_BATCH_SIZE
        batch_size = MAX_GPU_BATCH_SIZE

    def collate_fn(examples):
        # On TPU it's best to pad everything to the same length or training will be very slow.
        if accelerator.distributed_type == DistributedType.TPU:
            return tokenizer.pad(examples,
                                 padding="max_length",
                                 max_length=128,
                                 return_tensors="pt")
        return tokenizer.pad(examples, padding="longest", return_tensors="pt")

    # Instantiate dataloaders.
    train_dataloader = DataLoader(tokenized_datasets["train"],
                                  shuffle=True,
                                  collate_fn=collate_fn,
                                  batch_size=batch_size)
    eval_dataloader = DataLoader(tokenized_datasets["validation"],
                                 shuffle=False,
                                 collate_fn=collate_fn,
                                 batch_size=EVAL_BATCH_SIZE)

    set_seed(seed)

    # Instantiate the model (we build the model here so that the seed also control new weights initialization)
    model = AutoModelForSequenceClassification.from_pretrained(
        "bert-base-cased", return_dict=True)

    # We could avoid this line since the accelerator is set with `device_placement=True` (default value).
    # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
    # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
    model = model.to(accelerator.device)

    # Instantiate optimizer
    optimizer = AdamW(params=model.parameters(),
                      lr=lr,
                      correct_bias=correct_bias)

    # Prepare everything
    # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
    # prepare method.
    model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader)

    # Instantiate learning rate scheduler after preparing the training dataloader as the prepare method
    # may change its length.
    lr_scheduler = get_linear_schedule_with_warmup(
        optimizer=optimizer,
        num_warmup_steps=100,
        num_training_steps=(len(train_dataloader) * num_epochs) //
        gradient_accumulation_steps,
    )

    # Now we train the model
    for epoch in range(num_epochs):
        model.train()
        for step, batch in enumerate(train_dataloader):
            # We could avoid this line since we set the accelerator with `device_placement=True`.
            batch.to(accelerator.device)
            outputs = model(**batch)
            loss = outputs.loss
            loss = loss / gradient_accumulation_steps
            accelerator.backward(loss)
            if step % gradient_accumulation_steps == 0:
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

        model.eval()
        for step, batch in enumerate(eval_dataloader):
            # We could avoid this line since we set the accelerator with `device_placement=True`.
            batch.to(accelerator.device)
            with torch.no_grad():
                outputs = model(**batch)
            predictions = outputs.logits.argmax(dim=-1)
            metric.add_batch(
                predictions=accelerator.gather(predictions),
                references=accelerator.gather(batch["labels"]),
            )

        eval_metric = metric.compute()
        # Use accelerator.print to print only on the main process.
        accelerator.print(f"epoch {epoch}:", eval_metric)
def main():
    args = parse_args()

    if args.source_prefix is None and args.model_name_or_path in [
        "t5-small",
        "t5-base",
        "t5-large",
        "t5-3b",
        "t5-11b",
    ]:
        logger.warning(
            "You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
            "`--source_prefix 'summarize: ' `"
        )
    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    accelerator = Accelerator()
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state)

    # Setup logging, we only want one process per machine to log things on the screen.
    # accelerator.is_local_main_process is only True for one process per machine.
    logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
    else:
        data_files = {}
        if args.train_file is not None:
            data_files["train"] = args.train_file
        if args.validation_file is not None:
            data_files["validation"] = args.validation_file
        extension = args.train_file.split(".")[-1]
        raw_datasets = load_dataset(extension, data_files=data_files)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if args.config_name:
        config = AutoConfig.from_pretrained(args.config_name)
    elif args.model_name_or_path:
        config = AutoConfig.from_pretrained(args.model_name_or_path)
    else:
        config = CONFIG_MAPPING[args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")

    if args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=not args.use_slow_tokenizer)
    elif args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if args.model_name_or_path:
        model = AutoModelForSeq2SeqLM.from_pretrained(
            args.model_name_or_path,
            from_tf=bool(".ckpt" in args.model_name_or_path),
            config=config,
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForSeq2SeqLM.from_config(config)

    model.resize_token_embeddings(len(tokenizer))
    if model.config.decoder_start_token_id is None:
        raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

    prefix = args.source_prefix if args.source_prefix is not None else ""

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    column_names = raw_datasets["train"].column_names

    # Get the column names for input/target.
    dataset_columns = summarization_name_mapping.get(args.dataset_name, None)
    if args.text_column is None:
        text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
    else:
        text_column = args.text_column
        if text_column not in column_names:
            raise ValueError(
                f"--text_column' value '{args.text_column}' needs to be one of: {', '.join(column_names)}"
            )
    if args.summary_column is None:
        summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
    else:
        summary_column = args.summary_column
        if summary_column not in column_names:
            raise ValueError(
                f"--summary_column' value '{args.summary_column}' needs to be one of: {', '.join(column_names)}"
            )

    # Temporarily set max_target_length for training.
    max_target_length = args.max_target_length
    padding = "max_length" if args.pad_to_max_length else False

    def preprocess_function(examples):
        inputs = examples[text_column]
        targets = examples[summary_column]
        inputs = [prefix + inp for inp in inputs]
        model_inputs = tokenizer(inputs, max_length=args.max_source_length, padding=padding, truncation=True)

        # Setup the tokenizer for targets
        with tokenizer.as_target_tokenizer():
            labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    with accelerator.main_process_first():
        processed_datasets = raw_datasets.map(
            preprocess_function,
            batched=True,
            num_proc=args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not args.overwrite_cache,
            desc="Running tokenizer on dataset",
        )

    train_dataset = processed_datasets["train"]
    eval_dataset = processed_datasets["validation"]

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 1):
        logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")

    label_pad_token_id = -100 if args.ignore_pad_token_for_loss else tokenizer.pad_token_id
    data_collator = DataCollatorForSeq2Seq(
        tokenizer,
        model=model,
        label_pad_token_id=label_pad_token_id,
        pad_to_multiple_of=8 if accelerator.use_fp16 else None,
    )

    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
        labels = [label.strip() for label in labels]

        # rougeLSum expects newline after each sentence
        preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
        labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]

        return preds, labels

    train_dataloader = DataLoader(
        train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
    )
    eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)

    # Optimizer
    # Split weights in two groups, one with weight decay and the other not.
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {
            "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
            "weight_decay": 0.0,
        },
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader
    )

    # Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
    # shorter in multiprocess)

    # Scheduler and math around the number of training steps.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    else:
        args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # Metric
    metric = load_metric("rouge")

    # Train!
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.per_device_train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
    completed_steps = 0

    for epoch in range(args.num_train_epochs):
        model.train()
        for step, batch in enumerate(train_dataloader):
            outputs = model(**batch)
            loss = outputs.loss
            loss = loss / args.gradient_accumulation_steps
            accelerator.backward(loss)
            if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                completed_steps += 1

            if completed_steps >= args.max_train_steps:
                break

        model.eval()
        if args.val_max_target_length is None:
            args.val_max_target_length = args.max_target_length

        gen_kwargs = {
            "max_length": args.val_max_target_length if args is not None else config.max_length,
            "num_beams": args.num_beams,
        }
        for step, batch in enumerate(eval_dataloader):
            with torch.no_grad():
                generated_tokens = accelerator.unwrap_model(model).generate(
                    batch["input_ids"],
                    attention_mask=batch["attention_mask"],
                    **gen_kwargs,
                )

                generated_tokens = accelerator.pad_across_processes(
                    generated_tokens, dim=1, pad_index=tokenizer.pad_token_id
                )
                labels = batch["labels"]
                if not args.pad_to_max_length:
                    # If we did not pad to max length, we need to pad the labels too
                    labels = accelerator.pad_across_processes(batch["labels"], dim=1, pad_index=tokenizer.pad_token_id)

                generated_tokens = accelerator.gather(generated_tokens).cpu().numpy()
                labels = accelerator.gather(labels).cpu().numpy()

                if args.ignore_pad_token_for_loss:
                    # Replace -100 in the labels as we can't decode them.
                    labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
                if isinstance(generated_tokens, tuple):
                    generated_tokens = generated_tokens[0]
                decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
                decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

                decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)

                metric.add_batch(predictions=decoded_preds, references=decoded_labels)
        result = metric.compute(use_stemmer=True)
        # Extract a few results from ROUGE
        result = {key: value.mid.fmeasure * 100 for key, value in result.items()}

        result = {k: round(v, 4) for k, v in result.items()}

        logger.info(result)

        if args.push_to_hub and epoch < args.num_train_epochs - 1:
            accelerator.wait_for_everyone()
            unwrapped_model = accelerator.unwrap_model(model)
            unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
            if accelerator.is_main_process:
                tokenizer.save_pretrained(args.output_dir)
                repo.push_to_hub(
                    commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
                )

    if args.output_dir is not None:
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
        if accelerator.is_main_process:
            tokenizer.save_pretrained(args.output_dir)
            if args.push_to_hub:
                repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
示例#8
0
            test_ids.append(inst['uid'])
    simple_transform = lambda x: tokenizer.encode(
        x, max_length=288, truncation=True)
    test_data = SimpleDataset(list(all_instances.values()),
                              transform=simple_transform)
    inst_num = len(test_data)

sampler = SequentialSampler(test_data)
sent_padding_func = lambda x: padding_util(x, tokenizer.pad_token_id, 288)
instance_dataloader = DataLoader(test_data,
                                 sampler=sampler,
                                 batch_size=128,
                                 collate_fn=sent_padding_func)

# Prepare everything with our `accelerator`.
model, label_dataloader, instance_dataloader = accelerator.prepare(
    model, label_dataloader, instance_dataloader)

if args.mode == 'construct-pseudo':
    D, I, _ = perform_eval(accelerator.unwrap_model(model), label_dataloader,
                           label_ids, instance_dataloader, inst_num, test_ids,
                           accelerator)
    pseudo_pair_path = os.path.join(data_path, 'pseudo_pos.json')
    if accelerator.is_local_main_process:
        with open(pseudo_pair_path, 'w') as f:
            for row_id in tqdm(range(inst_num)):
                inst_id = test_ids[row_id]
                item = {'uid': inst_id}
                predict_target = []
                predict_score = []
                for col_id, score in zip(I[row_id][:5], D[row_id][:5]):
                    predict_target.append(int(col_id))
示例#9
0
            [p for p in net.classifier.parameters() if p.requires_grad]
        },
    ]

    optimizer = torch.optim.SGD(params_to_optimize,
                                lr=args.lr,
                                momentum=0.9,
                                weight_decay=args.weight_decay)

    # Just to be safe (a little bit more memory, by all means, save it to disk if you want)
    if args.state == 1:
        st_optimizer_init = copy.deepcopy(optimizer.state_dict())

    # Testing
    if args.state == 3:
        net, optimizer = accelerator.prepare(net, optimizer)
        test_loader = init(batch_size_labeled=args.batch_size_labeled,
                           batch_size_pseudo=args.batch_size_pseudo,
                           state=3,
                           split=None,
                           valtiny=args.valtiny,
                           no_aug=args.no_aug,
                           input_sizes=input_sizes,
                           data_set=args.dataset,
                           sets_id=args.sets_id,
                           mean=mean,
                           std=std,
                           keep_scale=keep_scale,
                           reverse_channels=reverse_channels)
        load_checkpoint(net=net,
                        optimizer=None,
示例#10
0
def main():
    # Setup configuration
    parser = HfArgumentParser(HumanEvalArguments)
    args = parser.parse_args()

    transformers.logging.set_verbosity_error()
    # enables code execution in code_eval metric
    os.environ["HF_ALLOW_CODE_EVAL"] = args.HF_ALLOW_CODE_EVAL
    # make sure tokenizer plays nice with multiprocessing
    os.environ["TOKENIZERS_PARALLELISM"] = "false"

    if args.num_workers is None:
        args.num_workers = multiprocessing.cpu_count()

    # Use dataset load to feed to accelerate
    accelerator = Accelerator()
    set_seed(args.seed, device_specific=True)

    # Load model and tokenizer
    tokenizer = AutoTokenizer.from_pretrained(args.model_ckpt)
    tokenizer.pad_token = tokenizer.eos_token
    model = AutoModelForCausalLM.from_pretrained(args.model_ckpt)

    # Generation settings
    gen_kwargs = {
        "do_sample":
        args.do_sample,
        "temperature":
        args.temperature,
        "max_new_tokens":
        args.max_new_tokens,
        "top_p":
        args.top_p,
        "top_k":
        args.top_k,
        "stopping_criteria":
        StoppingCriteriaList(
            [EndOfFunctionCriteria(0, EOF_STRINGS, tokenizer)]),
    }

    # Load evaluation dataset and metric
    human_eval = load_dataset("openai_humaneval")
    code_eval_metric = load_metric("code_eval")

    n_tasks = args.num_tasks if args.num_tasks is not None else len(
        human_eval["test"])
    n_copies = args.n_samples // args.batch_size

    human_eval_tokenized = TokenizedDataset(tokenizer,
                                            human_eval["test"],
                                            n_copies=n_copies,
                                            n_tasks=n_tasks)
    # do not confuse args.batch_size, which is actually the num_return_sequences
    human_eval_loader = DataLoader(human_eval_tokenized, batch_size=1)

    # Run a quick test to see if code evaluation is enabled
    try:
        _ = code_eval_metric.compute(references=[""], predictions=[[""]])
    except ValueError as exception:
        print(
            'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`'
            " flag to enable code evaluation.")
        raise exception

    model, human_eval_loader = accelerator.prepare(model, human_eval_loader)

    generations = complete_code(
        accelerator,
        model,
        tokenizer,
        human_eval_loader,
        n_tasks=n_tasks,
        batch_size=args.batch_size,
        **gen_kwargs,
    )

    if accelerator.is_main_process:
        references = []

        for task in tqdm(range(n_tasks)):
            test_func = human_eval["test"][task]["test"]
            entry_point = f"check({human_eval['test'][task]['entry_point']})"
            references.append("\n" + test_func + "\n" + entry_point)

        # Evaluate completions with "code_eval" metric
        pass_at_k, _ = code_eval_metric.compute(references=references,
                                                predictions=generations,
                                                num_workers=args.num_workers)
        print(f"Results: {pass_at_k}")

        # Save results to json file
        with open(args.output_file, "w") as fp:
            json.dump(pass_at_k, fp)
示例#11
0
class Learner:
    """Basic wrapper over base train loop.
    Handle model, dataloaders, optimizer and loss function.
    Uses acceleartor as handler over different devices, progress bar and simple logger capabilites."""
    def __init__(
            self,
            model: nn.Module,
            train_dl,
            val_dl,
            opt_fn,
            loss_fn,
            accelerator: Union[Accelerator, None] = None,
            batch_tfm: Union[nn.Module, None] = None,
            logger: Union[Logger, List[Logger]] = None,
            progress: bool = True,  # use progress
            cfg: dict = None) -> None:
        if accelerator is None:
            self.accelerator = Accelerator()
        else:
            self.accelerator = accelerator

        self.model = model
        self.loss_fn = loss_fn
        self.opt_fn = opt_fn
        self.train_dl = train_dl
        self.val_dl = val_dl
        self.cfg = cfg

        self.opt = self.reset_opt()

        self.batch_tfm = batch_tfm
        if logger is None:
            self.loggers = [Logger()]
        elif type(logger) is list:
            self.loggers = logger
        else:
            self.loggers = [logger]
        self.progress = progress

    def reset_opt(self):
        return self.opt_fn(self.model.parameters(), lr=self.cfg.lr)

    def fit(self, epochs: int):
        self.befor_fit(epochs)

        for epoch in range(1, epochs + 1):
            self.epoch_start(epoch)
            self.train()
            self.validate()
            self.epoch_end()
        self.after_fit()

    def one_batch(self, input):
        if self.batch_tfm is not None:
            input = self.batch_tfm(input)
        pred = self.model(input)
        return pred

    def train(self) -> None:
        start_time = time.time()
        self.model.train()
        for batch_num, batch in enumerate(self.train_dl):
            loss = self.loss_fn(self.one_batch(batch[0]), batch[1])
            self.accelerator.backward(loss)
            self.opt.step()
            # self.opt.zero_grad(set_to_none=True)
            for param in self.model.parameters():
                param.grad = None
            if self.progress:
                self.progress_bar.train_batch_end(batch_num)
        self.last_loss = loss.item()
        self.train_time = time.time() - start_time

    def validate(self) -> None:
        start_time = time.time()
        if self.progress:
            self.progress_bar.val_start()
        self.model.eval()
        with torch.no_grad():
            # valid_losses = []
            valid_losses = torch.tensor(0., device=self.accelerator.device)
            acc = torch.tensor(0., device=self.accelerator.device)
            for batch_num, batch in enumerate(self.val_dl):
                # valid_losses.append(self.loss_batch(batch).item())  # cpu? dont collect -> just summ?
                pred = self.one_batch(batch[0])
                valid_losses.add_(self.loss_fn(pred, batch[1]))
                acc.add_(accuracy(pred, batch[1])[0][0])
                if self.progress:
                    self.progress_bar.val_batch_end()
            # self.valid_loss = sum(valid_losses) / len(valid_losses)
            self.valid_loss = valid_losses.item() / len(self.val_dl)
            self.accuracy = acc.item() / len(self.val_dl)
        self.val_time = time.time() - start_time

    def epoch_start(self, epoch) -> None:
        self.epoch = epoch
        if self.progress:
            self.progress_bar.epoch_start(epoch)
            self.progress_bar.train_start()
        self.epoch_start_time = time.time()

    def epoch_end(self) -> None:
        epoch_time = time.time() - self.epoch_start_time
        to_log = {
            'epoch': self.epoch,
            'train_loss': self.last_loss,
            'val_loss': self.valid_loss,
            'accuracy': self.accuracy,
            'time': epoch_time,
            'train_time': self.train_time,
            'val_time': self.val_time
        }
        print(format_log(to_log))
        for logger in self.loggers:
            logger.log(to_log)
        if self.progress:
            self.progress_bar.epoch_end()

    def befor_fit(self, epochs):
        header = [
            'epoch', 'train_loss', 'val_loss', 'accuracy', 'time',
            'train_time', 'val_time'
        ]
        self.train_start_time = time.time()
        self.model, self.opt, self.train_dl, self.val_dl = self.accelerator.prepare(
            self.model, self.opt, self.train_dl, self.val_dl)
        for logger in self.loggers:
            logger.start(header=header, model=self.model)
            logger.log_cfg(self.cfg)
        if self.batch_tfm:
            self.batch_tfm = self.accelerator.prepare(self.batch_tfm)
        if self.progress:
            self.progress_bar = ProgressBar()
            self.progress_bar.fit_start(epochs,
                                        train_dl_len=len(self.train_dl),
                                        val_dl_len=len(self.val_dl))

        print(' '.join([f"{value:^9}" for value in header]))

    def after_fit(self):
        full_time = time.time() - self.train_start_time
        print(f"full time: {format_time(full_time)}")
        for logger in self.loggers:
            logger.finish()
        if self.progress:
            self.progress_bar.fit_end()
def main():
    # See all possible arguments in src/transformers/args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
    args = parse_args()

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    accelerator = Accelerator()
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()

        # set up weights and biases if available
        if is_wandb_available():
            import wandb

            wandb.init(project=args.output_dir.split("/")[-1])
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub and not args.preprocessing_only:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()

    # 1. Download and create train, validation dataset
    # We load all dataset configuration and datset split pairs passed in
    # ``args.dataset_config_names`` and ``args.dataset_split_names``
    datasets_splits = []
    for dataset_config_name, train_split_name in zip(args.dataset_config_names, args.dataset_split_names):
        # load dataset
        dataset_split = load_dataset(
            args.dataset_name,
            dataset_config_name,
            split=train_split_name,
            cache_dir=args.cache_dir,
        )
        datasets_splits.append(dataset_split)

    # Next, we concatenate all configurations and splits into a single training dataset
    raw_datasets = DatasetDict()
    if len(datasets_splits) > 1:
        raw_datasets["train"] = concatenate_datasets(datasets_splits).shuffle(seed=args.seed)
    else:
        raw_datasets["train"] = datasets_splits[0]

    # Take ``args.validation_split_percentage`` from the training dataset for the validation_split_percentage
    num_validation_samples = raw_datasets["train"].num_rows * args.validation_split_percentage // 100

    if num_validation_samples == 0:
        raise ValueError(
            "`args.validation_split_percentage` is less than a single sample "
            f"for {len(raw_datasets['train'])} training samples. Increase "
            "`args.num_validation_split_percentage`. "
        )

    raw_datasets["validation"] = raw_datasets["train"].select(range(num_validation_samples))
    raw_datasets["train"] = raw_datasets["train"].select(range(num_validation_samples, raw_datasets["train"].num_rows))

    # 2. Now we preprocess the datasets including loading the audio, resampling and normalization
    # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
    # so that we just need to set the correct target sampling rate and normalize the input
    # via the `feature_extractor`
    feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(args.model_name_or_path)

    # make sure that dataset decodes audio with correct sampling rate
    raw_datasets = raw_datasets.cast_column(
        args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
    )

    # only normalized-inputs-training is supported
    if not feature_extractor.do_normalize:
        raise ValueError(
            "Training is only supported for normalized inputs. Make sure ``feature_extractor.do_normalize == True``"
        )

    # set max & min audio length in number of samples
    max_length = int(args.max_duration_in_seconds * feature_extractor.sampling_rate)
    min_length = int(args.min_duration_in_seconds * feature_extractor.sampling_rate)

    def prepare_dataset(batch):
        sample = batch[args.audio_column_name]

        inputs = feature_extractor(
            sample["array"], sampling_rate=sample["sampling_rate"], max_length=max_length, truncation=True
        )
        batch["input_values"] = inputs.input_values[0]
        batch["input_length"] = len(inputs.input_values[0])

        return batch

    # load via mapped files via path
    cache_file_names = None
    if args.train_cache_file_name is not None:
        cache_file_names = {"train": args.train_cache_file_name, "validation": args.validation_cache_file_name}

    # load audio files into numpy arrays
    with accelerator.main_process_first():
        vectorized_datasets = raw_datasets.map(
            prepare_dataset,
            num_proc=args.preprocessing_num_workers,
            remove_columns=raw_datasets["train"].column_names,
            cache_file_names=cache_file_names,
        )

        if min_length > 0.0:
            vectorized_datasets = vectorized_datasets.filter(
                lambda x: x > min_length,
                num_proc=args.preprocessing_num_workers,
                input_columns=["input_length"],
            )

        vectorized_datasets = vectorized_datasets.remove_columns("input_length")

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with ``args.preprocessing_only`` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
    # cached dataset
    if args.preprocessing_only:
        return

    # 3. Load model
    config = Wav2Vec2Config.from_pretrained(args.model_name_or_path)

    # pretraining is only supported for "newer" stable layer norm architecture
    # apply_spec_augment has to be True, mask_feature_prob has to be 0.0
    if not config.do_stable_layer_norm or config.feat_extract_norm != "layer":
        raise ValueError(
            "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and"
            " ``config.feat_extract_norm='layer'"
        )

    # initialize random model
    model = Wav2Vec2ForPreTraining(config)

    # Activate gradient checkpointing if needed
    if args.gradient_checkpointing:
        model.gradient_checkpointing_enable()

    # 4. Define data collator, optimizer and scheduler
    data_collator = DataCollatorForWav2Vec2Pretraining(
        model=model, feature_extractor=feature_extractor, pad_to_multiple_of=args.pad_to_multiple_of
    )
    train_dataloader = DataLoader(
        vectorized_datasets["train"],
        shuffle=True,
        collate_fn=data_collator,
        batch_size=args.per_device_train_batch_size,
    )
    eval_dataloader = DataLoader(
        vectorized_datasets["validation"], collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
    )

    # Optimizer
    optimizer = AdamW(
        list(model.parameters()),
        lr=args.learning_rate,
        betas=[args.adam_beta1, args.adam_beta2],
        eps=args.adam_epsilon,
    )

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader
    )

    # Scheduler and math around the number of training steps.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)

    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    else:
        args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # 5. Train
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(vectorized_datasets['train'])}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.per_device_train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    completed_steps = 0
    starting_epoch = 0

    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
    completed_steps = 0
    starting_epoch = 0
    for epoch in range(starting_epoch, args.num_train_epochs):
        model.train()
        for step, batch in enumerate(train_dataloader):
            # compute num of losses
            num_losses = batch["mask_time_indices"].sum()
            sub_attention_mask = batch.pop("sub_attention_mask", None)
            sub_attention_mask = (
                sub_attention_mask if sub_attention_mask is not None else torch.ones_like(batch["mask_time_indices"])
            )
            percent_masked = num_losses / sub_attention_mask.sum()

            # forward
            outputs = model(**batch)

            # divide loss by gradient accumulation steps since gradients
            # are accumulated for multiple backward passes in PyTorch
            loss = outputs.loss / args.gradient_accumulation_steps
            accelerator.backward(loss)

            # make sure that `num_losses` is summed for distributed training
            # and average gradients over losses of all devices
            if accelerator.state.num_processes > 1:
                num_losses = accelerator.gather(num_losses).sum()
                gradient_multiplier = accelerator.state.num_processes / num_losses
                multiply_grads(model.module.parameters(), gradient_multiplier)
            else:
                multiply_grads(model.parameters(), 1 / num_losses)

            # update step
            if (step + 1) % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:

                # compute grad norm for monitoring
                scale = (
                    accelerator.scaler._scale.item()
                    if hasattr(accelerator, "scaler") and accelerator.scaler is not None
                    else 1
                )
                if accelerator.state.num_processes > 1:
                    grad_norm = get_grad_norm(model.module.parameters(), scale)
                else:
                    grad_norm = get_grad_norm(model.parameters(), scale)

                # update parameters
                optimizer.step()
                optimizer.zero_grad()

                if not accelerator.optimizer_step_was_skipped:
                    lr_scheduler.step()
                elif accelerator.is_local_main_process:
                    progress_bar.write(
                        f"Gradients have overflown - skipping update step... Updating gradient scale to {scale}..."
                    )

                # update gumbel temperature
                gumbel_temperature = max(
                    args.max_gumbel_temperature * args.gumbel_temperature_decay**completed_steps,
                    args.min_gumbel_temperature,
                )
                if hasattr(model, "module"):
                    model.module.set_gumbel_temperature(gumbel_temperature)
                else:
                    model.set_gumbel_temperature(gumbel_temperature)

                progress_bar.update(1)
                completed_steps += 1

            # 6. Log all results
            if (step + 1) % (args.gradient_accumulation_steps * args.logging_steps) == 0:
                loss.detach()
                outputs.contrastive_loss.detach()
                outputs.diversity_loss.detach()

                if accelerator.state.num_processes > 1:
                    loss = accelerator.gather(loss).sum()
                    outputs.contrastive_loss = accelerator.gather(outputs.contrastive_loss).sum()
                    outputs.diversity_loss = accelerator.gather(outputs.diversity_loss).sum()
                    percent_masked = accelerator.gather(percent_masked).sum()

                train_logs = {
                    "loss": (loss * args.gradient_accumulation_steps) / num_losses,
                    "constrast_loss": outputs.contrastive_loss / num_losses,
                    "div_loss": outputs.diversity_loss / num_losses,
                    "%_mask_idx": percent_masked / accelerator.num_processes,
                    "ppl": outputs.codevector_perplexity,
                    "lr": torch.tensor(optimizer.param_groups[0]["lr"]),
                    "temp": torch.tensor(gumbel_temperature),
                    "grad_norm": torch.tensor(grad_norm),
                }
                log_str = ""
                for k, v in train_logs.items():
                    log_str += "| {}: {:.3e}".format(k, v.item())

                if accelerator.is_local_main_process:
                    progress_bar.write(log_str)
                    if is_wandb_available():
                        wandb.log(train_logs)

            # save model every `args.saving_steps` steps
            if (step + 1) % (args.gradient_accumulation_steps * args.saving_steps) == 0:
                if (args.push_to_hub and epoch < args.num_train_epochs - 1) or args.output_dir is not None:
                    accelerator.wait_for_everyone()
                    unwrapped_model = accelerator.unwrap_model(model)
                    unwrapped_model.save_pretrained(
                        args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
                    )

                if (args.push_to_hub and epoch < args.num_train_epochs - 1) and accelerator.is_main_process:
                    repo.push_to_hub(
                        commit_message=f"Training in progress step {completed_steps}",
                        blocking=False,
                        auto_lfs_prune=True,
                    )

            # if completed steps > `args.max_train_steps` stop
            if completed_steps >= args.max_train_steps:
                break

        # 7. Validate!
        model.eval()

        # init logs
        val_logs = {
            "val_loss": 0,
            "val_contrastive_loss": 0,
            "val_diversity_loss": 0,
            "val_num_losses": 0,
        }
        for step, batch in enumerate(eval_dataloader):
            with torch.no_grad():
                batch.pop("sub_attention_mask", None)
                outputs = model(**batch)

            val_logs["val_loss"] += outputs.loss
            val_logs["val_contrastive_loss"] += outputs.contrastive_loss
            val_logs["val_diversity_loss"] += outputs.diversity_loss
            val_logs["val_num_losses"] += batch["mask_time_indices"].sum()

        # sum over devices in multi-processing
        if accelerator.num_processes > 1:
            val_logs = {k: accelerator.gather(v).sum() for k, v in val_logs.items()}

        val_logs = {k: v / val_logs["val_num_losses"] for k, v in val_logs.items()}

        log_str = ""
        for k, v in val_logs.items():
            log_str += "| {}: {:.3e}".format(k, v.item())

        if accelerator.is_local_main_process:
            progress_bar.write(log_str)
            if is_wandb_available():
                wandb.log(val_logs)

        if args.output_dir is not None:
            accelerator.wait_for_everyone()
            unwrapped_model = accelerator.unwrap_model(model)
            unwrapped_model.save_pretrained(
                args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
            )
            if accelerator.is_main_process:
                if args.push_to_hub:
                    repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)

# Setup Accelerator
accelerator = Accelerator()

# Parse configuration
parser = HfArgumentParser(EvaluationArguments)
args = parser.parse_args()
set_seed(args.seed)

# Logging
logger = logging.getLogger(__name__)
logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)

# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
tokenizer = AutoTokenizer.from_pretrained(args.model_ckpt)

# Load dataset and dataloader
eval_dataloader = create_dataloader(args)

# Prepare everything with our `accelerator`.
model, eval_dataloader = accelerator.prepare(model, eval_dataloader)

# Evaluate and save the last checkpoint
logger.info("Evaluating and saving model after training")
eval_loss, perplexity = evaluate(args)
logger.info(f"loss/eval: {eval_loss}, perplexity: {perplexity}")
示例#14
0
def predict():
    args = parse_args()
    accelerator = Accelerator()
    tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
    model = RoFormerForSequenceClassification.from_pretrained(
        args.model_name_or_path)
    model.eval()

    all_eval_datasets = []
    all_file_names = []
    if args.task_name in task_to_outputfile10.keys():
        all_eval_datasets.append(
            load_dataset("clue_10.py",
                         args.task_name,
                         cache_dir="./clue_caches_10",
                         split="test"))
        all_file_names.append(task_to_outputfile10[args.task_name])

    if args.task_name in task_to_outputfile11.keys():
        all_eval_datasets.append(
            load_dataset("clue_11.py",
                         args.task_name,
                         cache_dir="./clue_caches",
                         split="test"))
        all_file_names.append(task_to_outputfile11[args.task_name])

    for raw_test_dataset, file in zip(all_eval_datasets, all_file_names):
        os.makedirs("results", exist_ok=True)
        out_file = f"results/{file}"
        sentence1_key, sentence2_key = task_to_keys[args.task_name]
        int2str = raw_test_dataset.features["label"].int2str
        padding = "max_length" if args.pad_to_max_length else False

        def preprocess_test_function(examples):
            # Tokenize the texts
            if sentence1_key == "keyword":
                k1 = [";".join(l) for l in examples[sentence1_key]]
            else:
                k1 = examples[sentence1_key]
            texts = (k1, ) if sentence2_key is None else (
                k1, examples[sentence2_key])
            result = tokenizer(
                *texts,
                padding=padding,
                max_length=args.max_length,
                truncation=True,
                return_token_type_ids=False,
            )
            return result

        with accelerator.main_process_first():
            processed_test_dataset = raw_test_dataset.map(
                preprocess_test_function,
                batched=True,
                remove_columns=raw_test_dataset.column_names,
                desc="Running tokenizer on test dataset",
            )
        data_collator = DataCollatorWithPadding(
            tokenizer,
            pad_to_multiple_of=(8 if accelerator.use_fp16 else None))
        test_dataloader = DataLoader(
            processed_test_dataset,
            collate_fn=data_collator,
            batch_size=args.per_device_eval_batch_size,
        )
        model, test_dataloader = accelerator.prepare(model, test_dataloader)

        samples_seen = 0
        all_predictions = []

        with torch.no_grad():
            for step, batch in enumerate(tqdm(test_dataloader)):
                outputs = model(**batch)
                predictions = outputs.logits.argmax(dim=-1).cpu().numpy()
                predictions = accelerator.gather(predictions)
                # If we are in a multiprocess environment, the last batch has duplicates
                if accelerator.num_processes > 1:
                    if step == len(test_dataloader):
                        predictions = predictions[:len(test_dataloader.dataset
                                                       ) - samples_seen]
                    else:
                        samples_seen += predictions.shape[0]
                all_predictions.extend(int2str(predictions))

        with open(out_file, "w") as fw:
            for idx, pred in zip(raw_test_dataset["idx"], all_predictions):
                l = json.dumps({"id": str(idx), "label": pred})
                fw.write(l + "\n")
        fw.close()
示例#15
0
def main():
    args = parse_args()

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    # If we're using tracking, we also need to initialize it here and it will pick up all supported trackers in the environment
    accelerator = Accelerator(log_with="all", logging_dir=args.output_dir) if args.with_tracking else Accelerator()
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state)

    # Setup logging, we only want one process per machine to log things on the screen.
    # accelerator.is_local_main_process is only True for one process per machine.
    logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets for token classification task available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'tokens' or the first column if no column called
    # 'tokens' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
    else:
        data_files = {}
        if args.train_file is not None:
            data_files["train"] = args.train_file
        if args.validation_file is not None:
            data_files["validation"] = args.validation_file
        extension = args.train_file.split(".")[-1]
        raw_datasets = load_dataset(extension, data_files=data_files)
    # Trim a number of training examples
    if args.debug:
        for split in raw_datasets.keys():
            raw_datasets[split] = raw_datasets[split].select(range(100))
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if raw_datasets["train"] is not None:
        column_names = raw_datasets["train"].column_names
        features = raw_datasets["train"].features
    else:
        column_names = raw_datasets["validation"].column_names
        features = raw_datasets["validation"].features

    if args.text_column_name is not None:
        text_column_name = args.text_column_name
    elif "tokens" in column_names:
        text_column_name = "tokens"
    else:
        text_column_name = column_names[0]

    if args.label_column_name is not None:
        label_column_name = args.label_column_name
    elif f"{args.task_name}_tags" in column_names:
        label_column_name = f"{args.task_name}_tags"
    else:
        label_column_name = column_names[1]

    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

    # If the labels are of type ClassLabel, they are already integers and we have the map stored somewhere.
    # Otherwise, we have to get the list of labels manually.
    labels_are_int = isinstance(features[label_column_name].feature, ClassLabel)
    if labels_are_int:
        label_list = features[label_column_name].feature.names
        label_to_id = {i: i for i in range(len(label_list))}
    else:
        label_list = get_label_list(raw_datasets["train"][label_column_name])
        label_to_id = {l: i for i, l in enumerate(label_list)}

    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if args.config_name:
        config = AutoConfig.from_pretrained(args.config_name, num_labels=num_labels)
    elif args.model_name_or_path:
        config = AutoConfig.from_pretrained(args.model_name_or_path, num_labels=num_labels)
    else:
        config = CONFIG_MAPPING[args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")

    tokenizer_name_or_path = args.tokenizer_name if args.tokenizer_name else args.model_name_or_path
    if not tokenizer_name_or_path:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if config.model_type in {"gpt2", "roberta"}:
        tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, use_fast=True, add_prefix_space=True)
    else:
        tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, use_fast=True)

    if args.model_name_or_path:
        model = AutoModelForTokenClassification.from_pretrained(
            args.model_name_or_path,
            from_tf=bool(".ckpt" in args.model_name_or_path),
            config=config,
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForTokenClassification.from_config(config)

    model.resize_token_embeddings(len(tokenizer))

    # Model has labels -> use them.
    if model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id:
        if list(sorted(model.config.label2id.keys())) == list(sorted(label_list)):
            # Reorganize `label_list` to match the ordering of the model.
            if labels_are_int:
                label_to_id = {i: int(model.config.label2id[l]) for i, l in enumerate(label_list)}
                label_list = [model.config.id2label[i] for i in range(num_labels)]
            else:
                label_list = [model.config.id2label[i] for i in range(num_labels)]
                label_to_id = {l: i for i, l in enumerate(label_list)}
        else:
            logger.warning(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
                f"model labels: {list(sorted(model.config.label2id.keys()))}, dataset labels: {list(sorted(label_list))}."
                "\nIgnoring the model labels as a result.",
            )

    # Set the correspondences label/ID inside the model config
    model.config.label2id = {l: i for i, l in enumerate(label_list)}
    model.config.id2label = {i: l for i, l in enumerate(label_list)}

    # Map that sends B-Xxx label to its I-Xxx counterpart
    b_to_i_label = []
    for idx, label in enumerate(label_list):
        if label.startswith("B-") and label.replace("B-", "I-") in label_list:
            b_to_i_label.append(label_list.index(label.replace("B-", "I-")))
        else:
            b_to_i_label.append(idx)

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    padding = "max_length" if args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.

    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            max_length=args.max_length,
            padding=padding,
            truncation=True,
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
        )

        labels = []
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
            label_ids = []
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
                    label_ids.append(-100)
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
                    if args.label_all_tokens:
                        label_ids.append(b_to_i_label[label_to_id[label[word_idx]]])
                    else:
                        label_ids.append(-100)
                previous_word_idx = word_idx

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

    with accelerator.main_process_first():
        processed_raw_datasets = raw_datasets.map(
            tokenize_and_align_labels,
            batched=True,
            remove_columns=raw_datasets["train"].column_names,
            desc="Running tokenizer on dataset",
        )

    train_dataset = processed_raw_datasets["train"]
    eval_dataset = processed_raw_datasets["validation"]

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")

    # DataLoaders creation:
    if args.pad_to_max_length:
        # If padding was already done ot max length, we use the default data collator that will just convert everything
        # to tensors.
        data_collator = default_data_collator
    else:
        # Otherwise, `DataCollatorForTokenClassification` will apply dynamic padding for us (by padding to the maximum length of
        # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
        # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
        data_collator = DataCollatorForTokenClassification(
            tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None)
        )

    train_dataloader = DataLoader(
        train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
    )
    eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)

    # Optimizer
    # Split weights in two groups, one with weight decay and the other not.
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {
            "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
            "weight_decay": 0.0,
        },
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)

    # Use the device given by the `accelerator` object.
    device = accelerator.device
    model.to(device)

    # Scheduler and math around the number of training steps.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    else:
        args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
    )

    # Figure out how many steps we should save the Accelerator states
    if hasattr(args.checkpointing_steps, "isdigit"):
        checkpointing_steps = args.checkpointing_steps
        if args.checkpointing_steps.isdigit():
            checkpointing_steps = int(args.checkpointing_steps)
    else:
        checkpointing_steps = None

    # We need to initialize the trackers we use, and also store our configuration
    if args.with_tracking:
        experiment_config = vars(args)
        # TensorBoard cannot log Enums, need the raw value
        experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
        accelerator.init_trackers("ner_no_trainer", experiment_config)

    # Metrics
    metric = load_metric("seqeval")

    def get_labels(predictions, references):
        # Transform predictions and references tensos to numpy arrays
        if device.type == "cpu":
            y_pred = predictions.detach().clone().numpy()
            y_true = references.detach().clone().numpy()
        else:
            y_pred = predictions.detach().cpu().clone().numpy()
            y_true = references.detach().cpu().clone().numpy()

        # Remove ignored index (special tokens)
        true_predictions = [
            [label_list[p] for (p, l) in zip(pred, gold_label) if l != -100]
            for pred, gold_label in zip(y_pred, y_true)
        ]
        true_labels = [
            [label_list[l] for (p, l) in zip(pred, gold_label) if l != -100]
            for pred, gold_label in zip(y_pred, y_true)
        ]
        return true_predictions, true_labels

    def compute_metrics():
        results = metric.compute()
        if args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }

    # Train!
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.per_device_train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
    completed_steps = 0
    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
            accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
            accelerator.load_state(args.resume_from_checkpoint)
            resume_step = None
            path = args.resume_from_checkpoint
        else:
            # Get the most recent checkpoint
            dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
            dirs.sort(key=os.path.getctime)
            path = dirs[-1]  # Sorts folders by date modified, most recent checkpoint is the last
        if "epoch" in path:
            args.num_train_epochs -= int(path.replace("epoch_", ""))
        else:
            resume_step = int(path.replace("step_", ""))
            args.num_train_epochs -= resume_step // len(train_dataloader)
            resume_step = (args.num_train_epochs * len(train_dataloader)) - resume_step

    for epoch in range(args.num_train_epochs):
        model.train()
        if args.with_tracking:
            total_loss = 0
        for step, batch in enumerate(train_dataloader):
            # We need to skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == 0 and step < resume_step:
                continue
            outputs = model(**batch)
            loss = outputs.loss
            # We keep track of the loss at each epoch
            if args.with_tracking:
                total_loss += loss.detach().float()
            loss = loss / args.gradient_accumulation_steps
            accelerator.backward(loss)
            if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                completed_steps += 1

            if isinstance(checkpointing_steps, int):
                if completed_steps % checkpointing_steps == 0:
                    output_dir = f"step_{completed_steps}"
                    if args.output_dir is not None:
                        output_dir = os.path.join(args.output_dir, output_dir)
                    accelerator.save_state(output_dir)

            if completed_steps >= args.max_train_steps:
                break

        model.eval()
        samples_seen = 0
        for step, batch in enumerate(eval_dataloader):
            with torch.no_grad():
                outputs = model(**batch)
            predictions = outputs.logits.argmax(dim=-1)
            labels = batch["labels"]
            if not args.pad_to_max_length:  # necessary to pad predictions and labels for being gathered
                predictions = accelerator.pad_across_processes(predictions, dim=1, pad_index=-100)
                labels = accelerator.pad_across_processes(labels, dim=1, pad_index=-100)
            predictions_gathered, labels_gathered = accelerator.gather((predictions, labels))
            # If we are in a multiprocess environment, the last batch has duplicates
            if accelerator.num_processes > 1:
                if step == len(eval_dataloader):
                    predictions_gathered = predictions_gathered[: len(eval_dataloader.dataset) - samples_seen]
                    labels_gathered = labels_gathered[: len(eval_dataloader.dataset) - samples_seen]
                else:
                    samples_seen += labels_gathered.shape[0]
            preds, refs = get_labels(predictions_gathered, labels_gathered)
            metric.add_batch(
                predictions=preds,
                references=refs,
            )  # predictions and preferences are expected to be a nested list of labels, not label_ids

        eval_metric = compute_metrics()
        accelerator.print(f"epoch {epoch}:", eval_metric)
        if args.with_tracking:
            accelerator.log(
                {"seqeval": eval_metric, "train_loss": total_loss, "epoch": epoch, "step": completed_steps},
            )

        if args.push_to_hub and epoch < args.num_train_epochs - 1:
            accelerator.wait_for_everyone()
            unwrapped_model = accelerator.unwrap_model(model)
            unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
            if accelerator.is_main_process:
                tokenizer.save_pretrained(args.output_dir)
                repo.push_to_hub(
                    commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
                )

        if args.checkpointing_steps == "epoch":
            output_dir = f"epoch_{epoch}"
            if args.output_dir is not None:
                output_dir = os.path.join(args.output_dir, output_dir)
            accelerator.save_state(output_dir)

    if args.output_dir is not None:
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
        if accelerator.is_main_process:
            tokenizer.save_pretrained(args.output_dir)
            if args.push_to_hub:
                repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)

        with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
            json.dump({"eval_accuracy": eval_metric["accuracy"], "train_loss": float(loss.cpu().detach().numpy())}, f)
示例#16
0
def main():
    args = parse_args()

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    accelerator = Accelerator()
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state)

    # Setup logging, we only want one process per machine to log things on the screen.
    # accelerator.is_local_main_process is only True for one process per machine.
    logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
    else:
        data_files = {}
        if args.train_file is not None:
            data_files["train"] = args.train_file
        if args.validation_file is not None:
            data_files["validation"] = args.validation_file
        extension = args.train_file.split(".")[-1]
        raw_datasets = load_dataset(extension, data_files=data_files)
    # Trim a number of training examples
    if args.debug:
        for split in raw_datasets.keys():
            raw_datasets[split] = raw_datasets[split].select(range(100))
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if raw_datasets["train"] is not None:
        column_names = raw_datasets["train"].column_names
    else:
        column_names = raw_datasets["validation"].column_names

    # When using your own dataset or a different dataset from swag, you will probably need to change this.
    ending_names = [f"ending{i}" for i in range(4)]
    context_name = "sent1"
    question_header_name = "sent2"
    label_column_name = "label" if "label" in column_names else "labels"

    # Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if args.config_name:
        config = AutoConfig.from_pretrained(args.model_name_or_path)
    elif args.model_name_or_path:
        config = AutoConfig.from_pretrained(args.model_name_or_path)
    else:
        config = CONFIG_MAPPING[args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")

    if args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=not args.use_slow_tokenizer)
    elif args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if args.model_name_or_path:
        model = AutoModelForMultipleChoice.from_pretrained(
            args.model_name_or_path,
            from_tf=bool(".ckpt" in args.model_name_or_path),
            config=config,
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForMultipleChoice.from_config(config)

    model.resize_token_embeddings(len(tokenizer))

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    padding = "max_length" if args.pad_to_max_length else False

    def preprocess_function(examples):
        first_sentences = [[context] * 4 for context in examples[context_name]]
        question_headers = examples[question_header_name]
        second_sentences = [
            [f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(question_headers)
        ]
        labels = examples[label_column_name]

        # Flatten out
        first_sentences = list(chain(*first_sentences))
        second_sentences = list(chain(*second_sentences))

        # Tokenize
        tokenized_examples = tokenizer(
            first_sentences,
            second_sentences,
            max_length=args.max_length,
            padding=padding,
            truncation=True,
        )
        # Un-flatten
        tokenized_inputs = {k: [v[i : i + 4] for i in range(0, len(v), 4)] for k, v in tokenized_examples.items()}
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

    with accelerator.main_process_first():
        processed_datasets = raw_datasets.map(
            preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names
        )

    train_dataset = processed_datasets["train"]
    eval_dataset = processed_datasets["validation"]

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")

    # DataLoaders creation:
    if args.pad_to_max_length:
        # If padding was already done ot max length, we use the default data collator that will just convert everything
        # to tensors.
        data_collator = default_data_collator
    else:
        # Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of
        # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
        # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
        data_collator = DataCollatorForMultipleChoice(
            tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None)
        )

    train_dataloader = DataLoader(
        train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
    )
    eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)

    # Optimizer
    # Split weights in two groups, one with weight decay and the other not.
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {
            "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
            "weight_decay": 0.0,
        },
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)

    # Use the device given by the `accelerator` object.
    device = accelerator.device
    model.to(device)

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader
    )

    # Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
    # shorter in multiprocess)

    # Scheduler and math around the number of training steps.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    else:
        args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # Metrics
    metric = load_metric("accuracy")

    # Train!
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.per_device_train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
    completed_steps = 0

    for epoch in range(args.num_train_epochs):
        model.train()
        for step, batch in enumerate(train_dataloader):
            outputs = model(**batch)
            loss = outputs.loss
            loss = loss / args.gradient_accumulation_steps
            accelerator.backward(loss)
            if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                completed_steps += 1

            if completed_steps >= args.max_train_steps:
                break

        model.eval()
        for step, batch in enumerate(eval_dataloader):
            with torch.no_grad():
                outputs = model(**batch)
            predictions = outputs.logits.argmax(dim=-1)
            metric.add_batch(
                predictions=accelerator.gather(predictions),
                references=accelerator.gather(batch["labels"]),
            )

        eval_metric = metric.compute()
        accelerator.print(f"epoch {epoch}: {eval_metric}")

        if args.push_to_hub and epoch < args.num_train_epochs - 1:
            accelerator.wait_for_everyone()
            unwrapped_model = accelerator.unwrap_model(model)
            unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
            if accelerator.is_main_process:
                tokenizer.save_pretrained(args.output_dir)
                repo.push_to_hub(
                    commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
                )

    if args.output_dir is not None:
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
        if accelerator.is_main_process:
            tokenizer.save_pretrained(args.output_dir)
            if args.push_to_hub:
                repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
def main():
    args = parse_args()

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    # If we're using tracking, we also need to initialize it here and it will pick up all supported trackers in the environment
    accelerator = Accelerator(
        log_with="all",
        logging_dir=args.output_dir) if args.with_tracking else Accelerator()
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name,
                                               token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"),
                      "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(args.dataset_name,
                                    args.dataset_config_name)
    else:
        data_files = {}
        if args.train_file is not None:
            data_files["train"] = args.train_file
        if args.validation_file is not None:
            data_files["validation"] = args.validation_file
        extension = args.train_file.split(".")[-1]
        raw_datasets = load_dataset(extension, data_files=data_files)
    # Trim a number of training examples
    if args.debug:
        for split in raw_datasets.keys():
            raw_datasets[split] = raw_datasets[split].select(range(100))
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if raw_datasets["train"] is not None:
        column_names = raw_datasets["train"].column_names
    else:
        column_names = raw_datasets["validation"].column_names

    # When using your own dataset or a different dataset from swag, you will probably need to change this.
    ending_names = [f"ending{i}" for i in range(4)]
    context_name = "sent1"
    question_header_name = "sent2"
    label_column_name = "label" if "label" in column_names else "labels"

    # Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if args.config_name:
        config = AutoConfig.from_pretrained(args.model_name_or_path)
    elif args.model_name_or_path:
        config = AutoConfig.from_pretrained(args.model_name_or_path)
    else:
        config = CONFIG_MAPPING[args.model_type]()
        logger.warning(
            "You are instantiating a new config instance from scratch.")

    if args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
            args.tokenizer_name, use_fast=not args.use_slow_tokenizer)
    elif args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if args.model_name_or_path:
        model = AutoModelForMultipleChoice.from_pretrained(
            args.model_name_or_path,
            from_tf=bool(".ckpt" in args.model_name_or_path),
            config=config,
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForMultipleChoice.from_config(config)

    model.resize_token_embeddings(len(tokenizer))

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    padding = "max_length" if args.pad_to_max_length else False

    def preprocess_function(examples):
        first_sentences = [[context] * 4 for context in examples[context_name]]
        question_headers = examples[question_header_name]
        second_sentences = [[
            f"{header} {examples[end][i]}" for end in ending_names
        ] for i, header in enumerate(question_headers)]
        labels = examples[label_column_name]

        # Flatten out
        first_sentences = list(chain(*first_sentences))
        second_sentences = list(chain(*second_sentences))

        # Tokenize
        tokenized_examples = tokenizer(
            first_sentences,
            second_sentences,
            max_length=args.max_length,
            padding=padding,
            truncation=True,
        )
        # Un-flatten
        tokenized_inputs = {
            k: [v[i:i + 4] for i in range(0, len(v), 4)]
            for k, v in tokenized_examples.items()
        }
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

    with accelerator.main_process_first():
        processed_datasets = raw_datasets.map(
            preprocess_function,
            batched=True,
            remove_columns=raw_datasets["train"].column_names)

    train_dataset = processed_datasets["train"]
    eval_dataset = processed_datasets["validation"]

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(
            f"Sample {index} of the training set: {train_dataset[index]}.")

    # DataLoaders creation:
    if args.pad_to_max_length:
        # If padding was already done ot max length, we use the default data collator that will just convert everything
        # to tensors.
        data_collator = default_data_collator
    else:
        # Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of
        # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
        # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
        data_collator = DataCollatorForMultipleChoice(
            tokenizer,
            pad_to_multiple_of=(8 if accelerator.use_fp16 else None))

    train_dataloader = DataLoader(train_dataset,
                                  shuffle=True,
                                  collate_fn=data_collator,
                                  batch_size=args.per_device_train_batch_size)
    eval_dataloader = DataLoader(eval_dataset,
                                 collate_fn=data_collator,
                                 batch_size=args.per_device_eval_batch_size)

    # Optimizer
    # Split weights in two groups, one with weight decay and the other not.
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            args.weight_decay,
        },
        {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0,
        },
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)

    # Use the device given by the `accelerator` object.
    device = accelerator.device
    model.to(device)

    # Scheduler and math around the number of training steps.
    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    else:
        args.num_train_epochs = math.ceil(args.max_train_steps /
                                          num_update_steps_per_epoch)

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader, lr_scheduler)

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / args.gradient_accumulation_steps)
    args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch

    # Figure out how many steps we should save the Accelerator states
    if hasattr(args.checkpointing_steps, "isdigit"):
        checkpointing_steps = args.checkpointing_steps
        if args.checkpointing_steps.isdigit():
            checkpointing_steps = int(args.checkpointing_steps)
    else:
        checkpointing_steps = None

    # We need to initialize the trackers we use, and also store our configuration
    if args.with_tracking:
        experiment_config = vars(args)
        # TensorBoard cannot log Enums, need the raw value
        experiment_config["lr_scheduler_type"] = experiment_config[
            "lr_scheduler_type"].value
        accelerator.init_trackers("swag_no_trainer", experiment_config)

    # Metrics
    metric = load_metric("accuracy")

    # Train!
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(
        f"  Instantaneous batch size per device = {args.per_device_train_batch_size}"
    )
    logger.info(
        f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
    )
    logger.info(
        f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps),
                        disable=not accelerator.is_local_main_process)
    completed_steps = 0
    starting_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
            accelerator.print(
                f"Resumed from checkpoint: {args.resume_from_checkpoint}")
            accelerator.load_state(args.resume_from_checkpoint)
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
            dirs.sort(key=os.path.getctime)
            path = dirs[
                -1]  # Sorts folders by date modified, most recent checkpoint is the last
        # Extract `epoch_{i}` or `step_{i}`
        training_difference = os.path.splitext(path)[0]

        if "epoch" in training_difference:
            starting_epoch = int(training_difference.replace("epoch_", "")) + 1
            resume_step = None
        else:
            resume_step = int(training_difference.replace("step_", ""))
            starting_epoch = resume_step // len(train_dataloader)
            resume_step -= starting_epoch * len(train_dataloader)

    for epoch in range(starting_epoch, args.num_train_epochs):
        model.train()
        if args.with_tracking:
            total_loss = 0
        for step, batch in enumerate(train_dataloader):
            # We need to skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == starting_epoch:
                if resume_step is not None and step < resume_step:
                    completed_steps += 1
                    continue
            outputs = model(**batch)
            loss = outputs.loss
            # We keep track of the loss at each epoch
            if args.with_tracking:
                total_loss += loss.detach().float()
            loss = loss / args.gradient_accumulation_steps
            accelerator.backward(loss)
            if step % args.gradient_accumulation_steps == 0 or step == len(
                    train_dataloader) - 1:
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                completed_steps += 1

            if isinstance(checkpointing_steps, int):
                if completed_steps % checkpointing_steps == 0:
                    output_dir = f"step_{completed_steps }"
                    if args.output_dir is not None:
                        output_dir = os.path.join(args.output_dir, output_dir)
                    accelerator.save_state(output_dir)

            if completed_steps >= args.max_train_steps:
                break

        model.eval()
        samples_seen = 0
        for step, batch in enumerate(eval_dataloader):
            with torch.no_grad():
                outputs = model(**batch)
            predictions = outputs.logits.argmax(dim=-1)
            predictions, references = accelerator.gather(
                (predictions, batch["labels"]))
            # If we are in a multiprocess environment, the last batch has duplicates
            if accelerator.num_processes > 1:
                if step == len(eval_dataloader) - 1:
                    predictions = predictions[:len(eval_dataloader.dataset) -
                                              samples_seen]
                    references = references[:len(eval_dataloader.dataset) -
                                            samples_seen]
                else:
                    samples_seen += references.shape[0]
            metric.add_batch(
                predictions=predictions,
                references=references,
            )

        eval_metric = metric.compute()
        accelerator.print(f"epoch {epoch}: {eval_metric}")

        if args.with_tracking:
            accelerator.log(
                {
                    "accuracy": eval_metric,
                    "train_loss": total_loss,
                    "epoch": epoch,
                    "step": completed_steps
                }, )

        if args.push_to_hub and epoch < args.num_train_epochs - 1:
            accelerator.wait_for_everyone()
            unwrapped_model = accelerator.unwrap_model(model)
            unwrapped_model.save_pretrained(
                args.output_dir,
                is_main_process=accelerator.is_main_process,
                save_function=accelerator.save)
            if accelerator.is_main_process:
                tokenizer.save_pretrained(args.output_dir)
                repo.push_to_hub(
                    commit_message=f"Training in progress epoch {epoch}",
                    blocking=False,
                    auto_lfs_prune=True)

        if args.checkpointing_steps == "epoch":
            output_dir = f"epoch_{epoch}"
            if args.output_dir is not None:
                output_dir = os.path.join(args.output_dir, output_dir)
            accelerator.save_state(output_dir)

    if args.output_dir is not None:
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(
            args.output_dir,
            is_main_process=accelerator.is_main_process,
            save_function=accelerator.save)
        if accelerator.is_main_process:
            tokenizer.save_pretrained(args.output_dir)
            if args.push_to_hub:
                repo.push_to_hub(commit_message="End of training",
                                 auto_lfs_prune=True)
        with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
            json.dump({"eval_accuracy": eval_metric["accuracy"]}, f)
示例#18
0
def stage1pretrain():
    logger.info("stage1pretrain starts")
    config = PretrainConfig()
    if config.train_file is not None:
        extension = config.train_file.split(".")[-1]
        assert extension in [
            "csv", "json", "txt"
        ], "`train_file` should be a csv, json or txt file."
    if config.validation_file is not None:
        extension = config.validation_file.split(".")[-1]
        assert extension in [
            "csv", "json", "txt"
        ], "`validation_file` should be a csv, json or txt file."
    if config.output_dir is not None:
        os.makedirs(config.output_dir, exist_ok=True)

    saveDataWithTextsOnly("../../data/commonlitreadability/train.csv",
                          "../../data/commonlitreadability/test.csv")

    accelerator = Accelerator()
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state)
    logger.setLevel(
        logging.INFO if accelerator.is_local_main_process else logging.ERROR)

    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()
    if config.seed is not None:
        set_seed(config.seed)

    data_files = {}
    if config.train_file is not None:
        data_files["train"] = config.train_file
    if config.validation_file is not None:
        data_files["validation"] = config.validation_file
    extension = config.train_file.split(".")[-1]
    if extension == "txt":
        extension = "text"
    raw_datasets = load_dataset(extension, data_files=data_files)

    if config.config_name:
        modelconfig = AutoConfig.from_pretrained(config.config_name)
    elif config.model_name_or_path:
        modelconfig = AutoConfig.from_pretrained(config.model_name_or_path)
    else:
        modelconfig = CONFIG_MAPPING[config.model_type]()
        logger.warning(
            "You are instantiating a new config instance from scratch.")

    if config.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
            config.tokenizer_name, use_fast=not config.use_slow_tokenizer)
    elif config.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            config.model_name_or_path, use_fast=not config.use_slow_tokenizer)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if config.model_name_or_path:
        model = AutoModelForMaskedLM.from_pretrained(
            config.model_name_or_path,
            from_tf=bool(".ckpt" in config.model_name_or_path),
            config=modelconfig,
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForMaskedLM.from_config(modelconfig)

    model.resize_token_embeddings(len(tokenizer))

    column_names = raw_datasets["train"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

    if config.max_seq_length is None:
        max_seq_length = tokenizer.model_max_length
        if max_seq_length > 1024:
            logger.warning(
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
            )
            max_seq_length = 1024
    else:
        if config.max_seq_length > tokenizer.model_max_length:
            logger.warning(
                f"The max_seq_length passed ({config.max_seq_length}) is larger than the maximum length for the"
                f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
            )
        max_seq_length = min(config.max_seq_length, tokenizer.model_max_length)

    def tokenize_function(examples):
        return tokenizer(examples[text_column_name],
                         return_special_tokens_mask=True)

    def group_texts(examples):
        concatenated_examples = {
            k: sum(examples[k], [])
            for k in examples.keys()
        }
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        total_length = (total_length // max_seq_length) * max_seq_length
        result = {
            k: [
                t[i:i + max_seq_length]
                for i in range(0, total_length, max_seq_length)
            ]
            for k, t in concatenated_examples.items()
        }
        return result

    tokenized_datasets = raw_datasets.map(
        tokenize_function,
        batched=True,
        num_proc=config.preprocessing_num_workers,
        remove_columns=column_names,
        load_from_cache_file=not config.overwrite_cache,
    )

    tokenized_datasets = tokenized_datasets.map(
        group_texts,
        batched=True,
        num_proc=config.preprocessing_num_workers,
        load_from_cache_file=not config.overwrite_cache,
    )
    train_dataset = tokenized_datasets["train"]
    eval_dataset = tokenized_datasets["validation"]

    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer, mlm_probability=config.mlm_probability)
    train_dataloader = DataLoader(
        train_dataset,
        shuffle=True,
        collate_fn=data_collator,
        batch_size=config.per_device_train_batch_size)
    eval_dataloader = DataLoader(eval_dataset,
                                 collate_fn=data_collator,
                                 batch_size=config.per_device_eval_batch_size)

    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            config.weight_decay,
        },
        {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0,
        },
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=config.learning_rate)

    model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader)

    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / config.gradient_accumulation_steps)
    if config.max_train_steps is None:
        config.max_train_steps = config.num_train_epochs * num_update_steps_per_epoch
    else:
        config.num_train_epochs = math.ceil(config.max_train_steps /
                                            num_update_steps_per_epoch)

    lr_scheduler = get_scheduler(
        name=config.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=config.num_warmup_steps,
        num_training_steps=config.max_train_steps,
    )

    total_batch_size = config.per_device_train_batch_size * accelerator.num_processes * config.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {config.num_train_epochs}")
    logger.info(
        f"  Instantaneous batch size per device = {config.per_device_train_batch_size}"
    )
    logger.info(
        f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
    )
    logger.info(
        f"  Gradient Accumulation steps = {config.gradient_accumulation_steps}"
    )
    logger.info(f"  Total optimization steps = {config.max_train_steps}")
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(config.max_train_steps),
                        disable=not accelerator.is_local_main_process)
    completed_steps = 0

    for epoch in range(config.num_train_epochs):
        model.train()
        for step, batch in enumerate(train_dataloader):
            outputs = model(**batch)
            loss = outputs.loss
            loss = loss / config.gradient_accumulation_steps
            accelerator.backward(loss)
            if step % config.gradient_accumulation_steps == 0 or step == len(
                    train_dataloader) - 1:
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                completed_steps += 1

            if completed_steps >= config.max_train_steps:
                break

        model.eval()
        losses = []
        for step, batch in enumerate(eval_dataloader):
            with torch.no_grad():
                outputs = model(**batch)

            loss = outputs.loss
            losses.append(
                accelerator.gather(
                    loss.repeat(config.per_device_eval_batch_size)))

        losses = torch.cat(losses)
        losses = losses[:len(eval_dataset)]
        perplexity = math.exp(torch.mean(losses))

        logger.info(f"epoch {epoch}: perplexity: {perplexity}")

    if config.output_dir is not None:
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(config.output_dir,
                                        save_function=accelerator.save)
def main():
    args = parse_args()

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    handler = DistributedDataParallelKwargs(find_unused_parameters=True)
    accelerator = Accelerator(kwargs_handlers=[handler])
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state)

    # Setup logging, we only want one process per machine to log things on the screen.
    # accelerator.is_local_main_process is only True for one process per machine.
    logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets for token classification task available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'tokens' or the first column if no column called
    # 'tokens' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
    else:
        data_files = {}
        if args.train_file is not None:
            data_files["train"] = args.train_file
        if args.validation_file is not None:
            data_files["validation"] = args.validation_file
        extension = args.train_file.split(".")[-1]
        raw_datasets = load_dataset(extension, data_files=data_files)
    # Trim a number of training examples
    if args.debug:
        for split in raw_datasets.keys():
            raw_datasets[split] = raw_datasets[split].select(range(100))
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if raw_datasets["train"] is not None:
        column_names = raw_datasets["train"].column_names
        features = raw_datasets["train"].features
    else:
        column_names = raw_datasets["validation"].column_names
        features = raw_datasets["validation"].features

    if args.text_column_name is not None:
        text_column_name = args.text_column_name
    elif "tokens" in column_names:
        text_column_name = "tokens"
    else:
        text_column_name = column_names[0]

    if args.label_column_name is not None:
        label_column_name = args.label_column_name
    elif f"{args.task_name}_tags" in column_names:
        label_column_name = f"{args.task_name}_tags"
    else:
        label_column_name = column_names[1]

    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

    if isinstance(features[label_column_name].feature, ClassLabel):
        label_list = features[label_column_name].feature.names
        # No need to convert the labels since they are already ints.
    else:
        label_list = get_label_list(raw_datasets["train"][label_column_name])
    num_labels = len(label_list)

    # Map that sends B-Xxx label to its I-Xxx counterpart
    b_to_i_label = []

    for idx, label in enumerate(label_list):
        if label.startswith("B-") and label.replace("B-", "I-") in label_list:
            b_to_i_label.append(label_list.index(label.replace("B-", "I-")))
        else:
            b_to_i_label.append(idx)

    # Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if args.config_name:
        config = LukeConfig.from_pretrained(args.config_name, num_labels=num_labels)
    elif args.model_name_or_path:
        config = LukeConfig.from_pretrained(args.model_name_or_path, num_labels=num_labels)
    else:
        logger.warning("You are instantiating a new config instance from scratch.")

    tokenizer_name_or_path = args.tokenizer_name if args.tokenizer_name else args.model_name_or_path
    if not tokenizer_name_or_path:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    tokenizer = LukeTokenizer.from_pretrained(
        tokenizer_name_or_path,
        use_fast=False,
        task="entity_span_classification",
        max_entity_length=args.max_entity_length,
        max_mention_length=args.max_mention_length,
    )

    if args.model_name_or_path:
        model = LukeForEntitySpanClassification.from_pretrained(
            args.model_name_or_path,
            from_tf=bool(".ckpt" in args.model_name_or_path),
            config=config,
        )
    else:
        logger.info("Training new model from scratch")
        model = LukeForEntitySpanClassification.from_config(config)

    model.resize_token_embeddings(len(tokenizer))

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    padding = "max_length" if args.pad_to_max_length else False

    def compute_sentence_boundaries_for_luke(examples):
        sentence_boundaries = []

        for tokens in examples[text_column_name]:
            sentence_boundaries.append([0, len(tokens)])

        examples["sentence_boundaries"] = sentence_boundaries

        return examples

    def compute_entity_spans_for_luke(examples):
        all_entity_spans = []
        texts = []
        all_labels_entity_spans = []
        all_original_entity_spans = []

        for labels, tokens, sentence_boundaries in zip(
            examples[label_column_name], examples[text_column_name], examples["sentence_boundaries"]
        ):
            subword_lengths = [len(tokenizer.tokenize(token)) for token in tokens]
            total_subword_length = sum(subword_lengths)
            _, context_end = sentence_boundaries

            if total_subword_length > args.max_length - 2:
                cur_length = sum(subword_lengths[:context_end])
                idx = context_end - 1

                while cur_length > args.max_length - 2:
                    cur_length -= subword_lengths[idx]
                    context_end -= 1
                    idx -= 1

            text = ""
            sentence_words = tokens[:context_end]
            sentence_subword_lengths = subword_lengths[:context_end]
            word_start_char_positions = []
            word_end_char_positions = []
            labels_positions = {}

            for word, label in zip(sentence_words, labels):
                if word[0] == "'" or (len(word) == 1 and is_punctuation(word)):
                    text = text.rstrip()

                word_start_char_positions.append(len(text))
                text += word
                word_end_char_positions.append(len(text))
                text += " "
                labels_positions[(word_start_char_positions[-1], word_end_char_positions[-1])] = label

            text = text.rstrip()
            texts.append(text)
            entity_spans = []
            labels_entity_spans = []
            original_entity_spans = []

            for word_start in range(len(sentence_words)):
                for word_end in range(word_start, len(sentence_words)):
                    if (
                        sum(sentence_subword_lengths[word_start:word_end]) <= tokenizer.max_mention_length
                        and len(entity_spans) < tokenizer.max_entity_length
                    ):
                        entity_spans.append((word_start_char_positions[word_start], word_end_char_positions[word_end]))
                        original_entity_spans.append((word_start, word_end + 1))
                        if (
                            word_start_char_positions[word_start],
                            word_end_char_positions[word_end],
                        ) in labels_positions:
                            labels_entity_spans.append(
                                labels_positions[
                                    (word_start_char_positions[word_start], word_end_char_positions[word_end])
                                ]
                            )
                        else:
                            labels_entity_spans.append(0)

            all_entity_spans.append(entity_spans)
            all_labels_entity_spans.append(labels_entity_spans)
            all_original_entity_spans.append(original_entity_spans)

        examples["entity_spans"] = all_entity_spans
        examples["text"] = texts
        examples["labels_entity_spans"] = all_labels_entity_spans
        examples["original_entity_spans"] = all_original_entity_spans

        return examples

    def tokenize_and_align_labels(examples):
        entity_spans = []

        for v in examples["entity_spans"]:
            entity_spans.append(list(map(tuple, v)))

        tokenized_inputs = tokenizer(
            examples["text"],
            entity_spans=entity_spans,
            max_length=args.max_length,
            padding=padding,
            truncation=True,
        )

        if padding == "max_length":
            tokenized_inputs["labels"] = padding_tensor(
                examples["labels_entity_spans"], -100, tokenizer.padding_side, tokenizer.max_entity_length
            )
            tokenized_inputs["original_entity_spans"] = padding_tensor(
                examples["original_entity_spans"], (-1, -1), tokenizer.padding_side, tokenizer.max_entity_length
            )
            tokenized_inputs[label_column_name] = padding_tensor(
                examples[label_column_name], -1, tokenizer.padding_side, tokenizer.max_entity_length
            )
        else:
            tokenized_inputs["labels"] = [ex[: tokenizer.max_entity_length] for ex in examples["labels_entity_spans"]]
            tokenized_inputs["original_entity_spans"] = [
                ex[: tokenizer.max_entity_length] for ex in examples["original_entity_spans"]
            ]
            tokenized_inputs[label_column_name] = [
                ex[: tokenizer.max_entity_length] for ex in examples[label_column_name]
            ]

        return tokenized_inputs

    with accelerator.main_process_first():
        raw_datasets = raw_datasets.map(
            compute_sentence_boundaries_for_luke,
            batched=True,
            desc="Adding sentence boundaries",
        )
        raw_datasets = raw_datasets.map(
            compute_entity_spans_for_luke,
            batched=True,
            desc="Adding sentence spans",
        )

        processed_raw_datasets = raw_datasets.map(
            tokenize_and_align_labels,
            batched=True,
            remove_columns=raw_datasets["train"].column_names,
            desc="Running tokenizer on dataset",
        )

    train_dataset = processed_raw_datasets["train"]
    eval_dataset = processed_raw_datasets["validation"]

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")

    # DataLoaders creation:
    if args.pad_to_max_length:
        # If padding was already done ot max length, we use the default data collator that will just convert everything
        # to tensors.
        data_collator = default_data_collator
    else:
        # Otherwise, `DataCollatorForTokenClassification` will apply dynamic padding for us (by padding to the maximum length of
        # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
        # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
        data_collator = DataCollatorForLukeTokenClassification(
            tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None)
        )

    train_dataloader = DataLoader(
        train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
    )
    eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)

    # Optimizer
    # Split weights in two groups, one with weight decay and the other not.
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {
            "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
            "weight_decay": 0.0,
        },
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)

    # Use the device given by the `accelerator` object.
    device = accelerator.device
    model.to(device)

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader
    )

    # Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
    # shorter in multiprocess)

    # Scheduler and math around the number of training steps.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    else:
        args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # Metrics
    metric = load_metric("seqeval")

    def get_luke_labels(outputs, ner_tags, original_entity_spans):
        true_predictions = []
        true_labels = []

        for output, original_spans, tags in zip(outputs.logits, original_entity_spans, ner_tags):
            true_tags = [val for val in tags if val != -1]
            true_original_spans = [val for val in original_spans if val != (-1, -1)]
            max_indices = torch.argmax(output, axis=1)
            max_logits = torch.max(output, axis=1).values
            predictions = []

            for logit, index, span in zip(max_logits, max_indices, true_original_spans):
                if index != 0:
                    predictions.append((logit, span, label_list[index]))

            predicted_sequence = [label_list[0]] * len(true_tags)

            for _, span, label in sorted(predictions, key=lambda o: o[0], reverse=True):
                if all([o == label_list[0] for o in predicted_sequence[span[0] : span[1]]]):
                    predicted_sequence[span[0]] = label
                    if span[1] - span[0] > 1:
                        predicted_sequence[span[0] + 1 : span[1]] = [label] * (span[1] - span[0] - 1)

            true_predictions.append(predicted_sequence)
            true_labels.append([label_list[tag_id] for tag_id in true_tags])

        return true_predictions, true_labels

    def compute_metrics():
        results = metric.compute()
        if args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }

    # Train!
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.per_device_train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
    completed_steps = 0

    for epoch in range(args.num_train_epochs):
        model.train()
        for step, batch in enumerate(train_dataloader):
            _ = batch.pop("original_entity_spans")
            outputs = model(**batch)
            loss = outputs.loss
            loss = loss / args.gradient_accumulation_steps
            accelerator.backward(loss)
            if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                completed_steps += 1

            if completed_steps >= args.max_train_steps:
                break

        model.eval()
        for step, batch in enumerate(eval_dataloader):
            original_entity_spans = batch.pop("original_entity_spans")
            with torch.no_grad():
                outputs = model(**batch)

            preds, refs = get_luke_labels(outputs, batch[label_column_name], original_entity_spans)

            metric.add_batch(
                predictions=preds,
                references=refs,
            )  # predictions and preferences are expected to be a nested list of labels, not label_ids

        eval_metric = compute_metrics()
        accelerator.print(f"epoch {epoch}:", eval_metric)

        if args.push_to_hub and epoch < args.num_train_epochs - 1:
            accelerator.wait_for_everyone()
            unwrapped_model = accelerator.unwrap_model(model)
            unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
            if accelerator.is_main_process:
                tokenizer.save_pretrained(args.output_dir)
                repo.push_to_hub(
                    commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
                )

    if args.output_dir is not None:
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
        if accelerator.is_main_process:
            tokenizer.save_pretrained(args.output_dir)
            if args.push_to_hub:
                repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
示例#20
0
class TrainerBase(object):
    def __init__(self,
                 config,
                 builder,
                 wandb_run=None,
                 wandb_conf=None,
                 working_dir=None,
                 use_accelerator=False):

        self.config = config

        seed_everything(self.config.train.random_state)

        self.builder = builder
        self.es = EarlyStopper(mode=config.train.early_stopper.mode)
        self.wandb_run = wandb_run
        self.wandb_conf = wandb_conf
        self.working_dir = working_dir

        if self.working_dir is None:
            self.working_dir = os.path.join(self.config.train.dir,
                                            self.config.train.name)

        self.cm = CheckpointManager(self.working_dir)

        if self.wandb_run is None:
            self.writer = LogWriter()
        else:
            self.writer = WandbWriter(run=self.wandb_run)

        self.use_accelerator = use_accelerator
        if self.use_accelerator:
            from accelerate import Accelerator

            self.accelerator = Accelerator()
            self.device = self.accelerator.device
        else:
            self.device = torch.device(
                'cuda' if torch.cuda.is_available() else 'cpu')

        self.build_classes()

    def prepare_directories(self):
        os.makedirs(os.path.join(self.working_dir, 'checkpoint'),
                    exist_ok=True)

    # deprecated, need to check and improve
    def forward(self):
        self.model.eval()

        for dataloader in self.dataloaders:
            dataloader = dataloader['dataloader']

            batch_size = self.config.evaluation.batch_size
            total_size = len(dataloader.dataset)
            total_step = math.ceil(total_size / batch_size)

            all_outputs = []
            all_targets = None
            aggregated_metric_dict = defaultdict(list)
            epoch = 0
            with torch.no_grad():
                tbar = tqdm.tqdm(enumerate(dataloader),
                                 total=total_step,
                                 bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')
                for i, (inputs, targets) in tbar:
                    output = self.forward_hook(self.model,
                                               inputs,
                                               targets,
                                               device=self.device)
                    output = self.post_forward_hook(outputs=output,
                                                    inputs=inputs,
                                                    targets=targets,
                                                    data=None,
                                                    is_train=True)

                    metric_dict = self.metric_fn(outputs=output,
                                                 targets=targets,
                                                 data=inputs,
                                                 is_train=False)

                    log_dict = {}
                    log_dict['lr'] = self.optimizer.param_groups[0]['lr']
                    log_dict.update(metric_dict)

                    for key, value in log_dict.items():
                        aggregated_metric_dict[key].append(value)

                    f_epoch = epoch + i / total_step

                    if isinstance(output, list) or isinstance(output, tuple):
                        for i in range(len(output)):
                            if len(all_outputs) < len(output):
                                all_outputs.append([])
                            all_outputs[i].append(output[i])
                    else:
                        all_outputs.append(output)

                    if isinstance(targets, dict):
                        if all_targets is None:
                            all_targets = defaultdict(list)

                        for k in targets:
                            all_targets[k].append(targets[k])
                    else:
                        if all_targets is None:
                            all_targets = []
                        all_targets.append(targets)

                    self.logger_fn(self.writer,
                                   split='test',
                                   outputs=output,
                                   labels=targets,
                                   data=inputs,
                                   log_dict=log_dict,
                                   epoch=epoch,
                                   step=i,
                                   num_steps_in_epoch=total_step)

                aggregated_metric_dict = {
                    f'avg_{key}': np.mean(value)
                    for key, value in aggregated_metric_dict.items()
                }
                self.logger_fn(self.writer,
                               split='test',
                               outputs=all_outputs,
                               labels=all_targets,
                               log_dict=aggregated_metric_dict,
                               epoch=epoch)

                if isinstance(all_outputs[0], list):
                    for i in range(len(all_outputs)):
                        all_outputs[i] = torch.cat(all_outputs[i], dim=0)
                else:
                    all_outputs = torch.cat(all_outputs, dim=0)

                if isinstance(all_targets, dict):
                    for k in all_targets:
                        if isinstance(all_targets[k][0], torch.Tensor):
                            all_targets[k] = torch.cat(all_targets[k], dim=0)
                        else:
                            # if it's a list,
                            tmp = []
                            for v in all_targets[k]:
                                tmp.extend(v)
                            all_targets[k] = tmp
                else:
                    all_targets = torch.cat(all_targets, dim=0)

                return all_outputs, all_targets

    # def evaluate_single_epoch(self, dataloader, epoch, split):
    #     self.model.eval()

    #     batch_size = self.config.evaluation.batch_size
    #     total_size = len(dataloader.dataset)
    #     total_step = math.ceil(total_size / batch_size)

    #     with torch.no_grad():
    #         all_outputs = []
    #         all_targets = None
    #         aggregated_metric_dict = defaultdict(list)
    #         tbar = tqdm.tqdm(enumerate(dataloader), total=total_step, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')
    #         for i, (inputs, targets) in tbar:
    #             output = self.forward_hook(self.model, inputs, targets, device=self.device)
    #             output = self.post_forward_hook(
    #                 outputs=output, inputs=inputs, targets=targets, data=None, is_train=True)

    #             loss = self.loss_fn(output, targets, device=self.device)

    #             if isinstance(loss, dict):
    #                 loss_dict = loss
    #                 loss = loss_dict['loss']
    #             else:
    #                 loss_dict = {'loss': loss}

    #             metric_dict = self.metric_fn(
    #                 outputs=output, targets=targets, data=inputs, is_train=False)

    #             log_dict = {key: value.item() for key, value in loss_dict.items()}
    #             log_dict['lr'] = self.optimizer.param_groups[0]['lr']
    #             log_dict.update(metric_dict)

    #             for key, value in log_dict.items():
    #                 aggregated_metric_dict[key].append(value)

    #             f_epoch = epoch + i / total_step
    #             tbar.set_description(f'[ val ] {f_epoch: .2f} epoch')
    #             tbar.set_postfix(
    #                 lr=self.optimizer.param_groups[0]['lr'], loss=f'{loss.item():.5f}')

    #             if isinstance(output, list) or isinstance(output, tuple):
    #                 for i in range(len(output)):
    #                     if len(all_outputs) < len(output):
    #                         all_outputs.append([])
    #                     all_outputs[i].append(output[i])
    #             else:
    #                 all_outputs.append(output)

    #             if isinstance(targets, dict):
    #                 if all_targets is None:
    #                     all_targets = defaultdict(list)

    #                 for k in targets:
    #                     all_targets[k].append(targets[k])
    #             else:
    #                 if all_targets is None:
    #                     all_targets = []
    #                 all_targets.append(targets)

    #             self.logger_fn(self.writer, split=split, outputs=output, labels=targets, data=inputs,
    #                                  log_dict=log_dict, epoch=epoch, step=i, num_steps_in_epoch=total_step)

    #         aggregated_metric_dict = {f'avg_{key}':np.mean(value) for key, value in aggregated_metric_dict.items()}
    #         self.logger_fn(self.writer, split=split, outputs=all_outputs, labels=all_targets,
    #                                  log_dict=aggregated_metric_dict, epoch=epoch)
    #         return aggregated_metric_dict[f'[{split}]_avg_score']

    # def train_single_epoch(self, dataloader, epoch, split):
    #     self.model.train()

    #     # loop calc
    #     batch_size = self.config.train.batch_size
    #     total_size = len(dataloader.dataset)
    #     total_step = math.ceil(total_size / batch_size)

    #     tbar = tqdm.tqdm(enumerate(dataloader), total=total_step, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')
    #     for i, (inputs, targets) in tbar:
    #         output = self.forward_hook(self.model, inputs, targets, device=self.device)
    #         output = self.post_forward_hook(
    #             outputs=output, inputs=inputs, targets=targets, data=None, is_train=True)

    #         loss = self.loss_fn(output, targets, device=self.device)

    #         metric_dict = self.metric_fn(
    #             outputs=output, targets=targets, data=inputs, is_train=True)

    #         if isinstance(loss, dict):
    #             loss_dict = loss
    #             loss = loss_dict['loss']
    #         else:
    #             loss_dict = {'loss': loss}

    #         # backward()
    #         loss.backward()

    #         # optimizer
    #         if self.config.train.gradient_accumulation_step is None:
    #             self.optimizer.step()
    #             self.optimizer.zero_grad()
    #         elif (i+1) % self.config.train.gradient_accumulation_step == 0:
    #             self.optimizer.step()
    #             self.optimizer.zero_grad()

    #         log_dict = {key: value.item() for key, value in loss_dict.items()}
    #         log_dict['lr'] = self.optimizer.param_groups[0]['lr']
    #         log_dict.update(metric_dict)
    #         log_dict.update({'epoch': epoch})

    #         f_epoch = epoch + i / total_step
    #         tbar.set_description(f'[train] {f_epoch: .2f} epoch')
    #         tbar.set_postfix(
    #             lr=self.optimizer.param_groups[0]['lr'], loss=f'{loss.item():.5f}')

    #         self.logger_fn(self.writer, split=split, outputs=output, labels=targets,
    #                              log_dict=log_dict, epoch=epoch, step=i, num_steps_in_epoch=total_step)

    def calc_steps(self, dataloader, is_train):
        if is_train:
            batch_size = self.config.train.batch_size
        else:
            batch_size = self.config.evaluation.batch_size

        total_size = len(dataloader.dataset)
        total_step = math.ceil(total_size / batch_size)
        return total_step

    def process_single_epoch(self,
                             dataloader: DataLoader,
                             epoch: int,
                             is_train: bool,
                             eval_interval: int = 1) -> float:
        self.model.train(is_train)
        # if self.model.training:
        #     print('training mode')
        # else:
        #     print('eval mode')
        # dataloader = self.accelerator.prepare(dataloader)

        total_step = self.calc_steps(dataloader, is_train)
        logger = self.builder.build_logger_fn(self.config,
                                              writer=self.writer,
                                              epoch=epoch,
                                              total_step=total_step,
                                              is_train=is_train)
        metric = self.builder.build_metric_fn(self.config)

        with torch.set_grad_enabled(is_train):
            all_outputs = []
            all_targets = None

            tbar = tqdm.tqdm(enumerate(dataloader),
                             total=total_step,
                             bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')
            for step, (inputs, targets) in tbar:
                outputs = self.forward_hook(self.model,
                                            inputs,
                                            targets,
                                            device=self.device)
                # outputs = self.post_forward_hook(
                #     outputs=outputs, inputs=inputs, targets=targets, data=None, is_train=True)

                loss = self.loss_fn(outputs, targets, device=self.device)
                if isinstance(loss, dict):
                    loss_dict = loss
                    loss = loss_dict['loss']
                else:
                    loss_dict = {'loss': loss}

                lr = self.optimizer.param_groups[0]['lr']

                if not is_train:
                    self.aggregate(all_outputs, outputs, all_targets, targets)

                logger.batch_size = outputs.shape[0]
                logger.log('lr', lr, step)
                logger.log_dict(loss_dict, step)
                logger.log_dict(
                    metric.calculate(outputs=outputs,
                                     targets=targets,
                                     extra_data=inputs,
                                     is_train=is_train), step)

                logger.write(step)

                if is_train:
                    self.backward(loss=loss, step=step)

                phase = 'train' if is_train else 'validating'
                tbar.set_postfix(phase=phase,
                                 epoch=f'{epoch + 1}',
                                 lr=lr,
                                 loss=f'{logger.loss:.5f}',
                                 score=f'{logger.score:.5f}')

                if is_train and step % eval_interval == 0:
                    print('Validation')
                    score = self.process_single_epoch(self.val_dataloader,
                                                      epoch,
                                                      is_train=False)
                    _, save_ckpt = self.es(score)
                    if save_ckpt:
                        self.cm.save(self.model,
                                     self.optimizer,
                                     epoch + 1,
                                     score,
                                     keep=1,
                                     only_state_dict=self.config.train.
                                     save_state_dict_only)
                    self.model.train(is_train)

            return logger.score

    def backward(self, loss, step):
        if self.use_accelerator:
            self.accelerator.backward(loss)
        else:
            loss.backward()

        if self.config.train.gradient_accumulation_step is None:
            self.optimizer.step()
            self.scheduler.step()
            self.optimizer.zero_grad()
        elif (step + 1) % self.config.train.gradient_accumulation_step == 0:
            self.optimizer.step()
            self.scheduler.step()
            self.optimizer.zero_grad()
        else:
            pass

    def aggregate(self, all_outputs, outputs, all_targets, targets):
        if isinstance(outputs, list) or isinstance(outputs, tuple):
            for i in range(len(outputs)):
                if len(all_outputs) < len(outputs):
                    all_outputs.append([])
                all_outputs[i].append(outputs[i])
        else:
            all_outputs.append(outputs)

        if isinstance(targets, dict):
            if all_targets is None:
                all_targets = defaultdict(list)

            for k in targets:
                all_targets[k].append(targets[k])
        else:
            if all_targets is None:
                all_targets = []
            all_targets.append(targets)

    def train(self, last_epoch, last_accuracy=None):
        ckpt_score = last_accuracy

        for epoch in range(last_epoch, self.config.train.num_epochs - 1):
            s_time = time.time()

            torch.cuda.synchronize()
            self.process_single_epoch(self.train_dataloader,
                                      epoch,
                                      is_train=True,
                                      eval_interval=self.config.evaluation.
                                      eval_interval_between_batch)
            torch.cuda.synchronize()

            e_time = time.time()
            print(f'epoch {epoch} takes {e_time - s_time} seconds.')

        return self.es.best_score

    def build_classes(self):
        # prepare directories
        self.prepare_directories()

        # build dataloaders
        self.dataloaders = self.builder.build_dataloaders(self.config)

        # build model
        self.model = self.builder.build_model(self.config)
        self.model = self.model.to(self.device)

        # build loss
        self.loss_fn = self.builder.build_loss_fn(self.config)

        # build hooks
        self.forward_hook = self.builder.build_forward_hook(self.config)
        self.post_forward_hook = self.builder.build_post_forward_hook(
            self.config)

        # build optimizer
        if 'no_bias_decay' in self.config.train and self.config.train.no_bias_decay:
            param_optimizer = list(self.model.named_parameters())
            no_decay = self.config.optimizer.no_decay
            optimizer_parameters = [{
                'params': [
                    p for n, p in param_optimizer
                    if not any(nd in n for nd in no_decay)
                ],
                'weight_decay':
                self.config.optimizer.weight_decay
            }, {
                'params': [
                    p for n, p in param_optimizer
                    if any(nd in n for nd in no_decay)
                ],
                'weight_decay':
                0.0
            }]
        else:
            optimizer_parameters = self.model.parameters()

        for d in self.dataloaders:
            is_train = d['mode']

            if is_train:
                self.train_dataloader = d['dataloader']
            else:
                self.val_dataloader = d['dataloader']

        self.total_steps = int(
            len(self.train_dataloader.dataset) / self.config.train.batch_size *
            self.config.train.num_epochs)
        self.optimizer = self.builder.build_optimizer(
            self.config,
            params=optimizer_parameters,
            total_steps=self.total_steps)

        if self.use_accelerator:
            self.model, self.optimizer, self.dataloaders[0][
                'dataloader'], self.dataloaders[1][
                    'dataloader'] = self.accelerator.prepare(
                        self.model, self.optimizer,
                        self.dataloaders[0]['dataloader'],
                        self.dataloaders[1]['dataloader'])

    def run(self):
        last_epoch, step, last_accuracy = -1, -1, None

        if self.config.train.continue_from_last_checkpoint:
            # load checkpoint
            ckpt = self.cm.latest()
            if ckpt is not None:
                last_epoch, step, last_accuracy = self.cm.load(
                    self.model, self.optimizer, ckpt)

        # build scheduler
        self.scheduler = self.builder.build_scheduler(
            self.config,
            optimizer=self.optimizer,
            last_epoch=last_epoch,
            total_steps=self.total_steps)

        # train loop
        best_score = self.train(last_epoch=last_epoch,
                                last_accuracy=last_accuracy)
        return best_score
示例#21
0
def main():
    # Parse the arguments
    args = parse_args()

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    accelerator = Accelerator()

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state)

    # Setup logging, we only want one process per machine to log things on the screen.
    # accelerator.is_local_main_process is only True for one process per machine.
    logger.setLevel(
        logging.INFO if accelerator.is_local_main_process else logging.ERROR)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(args.dataset_name,
                                    args.dataset_config_name)
    else:
        data_files = {}
        if args.train_file is not None:
            data_files["train"] = args.train_file
        if args.validation_file is not None:
            data_files["validation"] = args.validation_file
        extension = args.train_file.split(".")[-1]
        raw_datasets = load_dataset(extension, data_files=data_files)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if args.config_name:
        config = AutoConfig.from_pretrained(args.model_name_or_path)
    elif args.model_name_or_path:
        config = AutoConfig.from_pretrained(args.model_name_or_path)
    else:
        config = CONFIG_MAPPING[args.model_type]()
        logger.warning(
            "You are instantiating a new config instance from scratch.")

    if args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
            args.tokenizer_name, use_fast=not args.use_slow_tokenizer)
    elif args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if args.model_name_or_path:
        model = AutoModelForSeq2SeqLM.from_pretrained(
            args.model_name_or_path,
            from_tf=bool(".ckpt" in args.model_name_or_path),
            config=config,
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForSeq2SeqLM.from_config(config)

    model.resize_token_embeddings(len(tokenizer))

    # Set decoder_start_token_id
    if model.config.decoder_start_token_id is None and isinstance(
            tokenizer, (MBartTokenizer, MBartTokenizerFast)):
        assert (args.target_lang is not None and args.source_lang
                is not None), "mBart requires --target_lang and --source_lang"
        if isinstance(tokenizer, MBartTokenizer):
            model.config.decoder_start_token_id = tokenizer.lang_code_to_id[
                args.target_lang]
        else:
            model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(
                args.target_lang)

    if model.config.decoder_start_token_id is None:
        raise ValueError(
            "Make sure that `config.decoder_start_token_id` is correctly defined"
        )

    prefix = args.source_prefix if args.source_prefix is not None else ""

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    column_names = raw_datasets["train"].column_names

    # For translation we set the codes of our source and target languages (only useful for mBART, the others will
    # ignore those attributes).
    if isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
        if args.source_lang is not None:
            tokenizer.src_lang = args.source_lang
        if args.target_lang is not None:
            tokenizer.tgt_lang = args.target_lang

    # Get the language codes for input/target.
    source_lang = args.source_lang.split("_")[0]
    target_lang = args.target_lang.split("_")[0]

    padding = "max_length" if args.pad_to_max_length else False

    # Temporarily set max_target_length for training.
    max_target_length = args.max_target_length
    padding = "max_length" if args.pad_to_max_length else False

    def preprocess_function(examples):
        inputs = [ex[source_lang] for ex in examples["translation"]]
        targets = [ex[target_lang] for ex in examples["translation"]]
        inputs = [prefix + inp for inp in inputs]
        model_inputs = tokenizer(inputs,
                                 max_length=args.max_source_length,
                                 padding=padding,
                                 truncation=True)

        # Setup the tokenizer for targets
        with tokenizer.as_target_tokenizer():
            labels = tokenizer(targets,
                               max_length=max_target_length,
                               padding=padding,
                               truncation=True)

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and args.ignore_pad_token_for_loss:
            labels["input_ids"] = [[
                (l if l != tokenizer.pad_token_id else -100) for l in label
            ] for label in labels["input_ids"]]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    processed_datasets = raw_datasets.map(
        preprocess_function,
        batched=True,
        num_proc=args.preprocessing_num_workers,
        remove_columns=column_names,
        load_from_cache_file=not args.overwrite_cache,
        desc="Running tokenizer on dataset",
    )

    train_dataset = processed_datasets["train"]
    eval_dataset = processed_datasets["validation"]

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(
            f"Sample {index} of the training set: {train_dataset[index]}.")

    # DataLoaders creation:
    label_pad_token_id = -100 if args.ignore_pad_token_for_loss else tokenizer.pad_token_id
    if args.pad_to_max_length:
        # If padding was already done ot max length, we use the default data collator that will just convert everything
        # to tensors.
        data_collator = default_data_collator
    else:
        # Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of
        # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
        # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
        data_collator = DataCollatorForSeq2Seq(
            tokenizer,
            model=model,
            label_pad_token_id=label_pad_token_id,
            pad_to_multiple_of=8 if accelerator.use_fp16 else None,
        )

    train_dataloader = DataLoader(train_dataset,
                                  shuffle=True,
                                  collate_fn=data_collator,
                                  batch_size=args.per_device_train_batch_size)
    eval_dataloader = DataLoader(eval_dataset,
                                 collate_fn=data_collator,
                                 batch_size=args.per_device_eval_batch_size)

    # Optimizer
    # Split weights in two groups, one with weight decay and the other not.
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            args.weight_decay,
        },
        {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0,
        },
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader)

    # Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
    # shorter in multiprocess)

    # Scheduler and math around the number of training steps.
    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    else:
        args.num_train_epochs = math.ceil(args.max_train_steps /
                                          num_update_steps_per_epoch)

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    metric = load_metric("sacrebleu")

    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
        labels = [[label.strip()] for label in labels]

        return preds, labels

    # Train!
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(
        f"  Instantaneous batch size per device = {args.per_device_train_batch_size}"
    )
    logger.info(
        f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
    )
    logger.info(
        f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps),
                        disable=not accelerator.is_local_main_process)
    completed_steps = 0

    for epoch in range(args.num_train_epochs):
        model.train()
        for step, batch in enumerate(train_dataloader):
            outputs = model(**batch)
            loss = outputs.loss
            loss = loss / args.gradient_accumulation_steps
            accelerator.backward(loss)
            if step % args.gradient_accumulation_steps == 0 or step == len(
                    train_dataloader) - 1:
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                completed_steps += 1

            if completed_steps >= args.max_train_steps:
                break

        model.eval()

        if args.val_max_target_length is None:
            args.val_max_target_length = args.max_target_length

        gen_kwargs = {
            "max_length":
            args.val_max_target_length
            if args is not None else config.max_length,
            "num_beams":
            args.num_beams,
        }
        for step, batch in enumerate(eval_dataloader):
            with torch.no_grad():
                generated_tokens = accelerator.unwrap_model(model).generate(
                    batch["input_ids"],
                    attention_mask=batch["attention_mask"],
                    **gen_kwargs,
                )

                generated_tokens = accelerator.pad_across_processes(
                    generated_tokens, dim=1, pad_index=tokenizer.pad_token_id)
                labels = batch["labels"]
                if not args.pad_to_max_length:
                    # If we did not pad to max length, we need to pad the labels too
                    labels = accelerator.pad_across_processes(
                        batch["labels"],
                        dim=1,
                        pad_index=tokenizer.pad_token_id)

                generated_tokens = accelerator.gather(
                    generated_tokens).cpu().numpy()
                labels = accelerator.gather(labels).cpu().numpy()

                if args.ignore_pad_token_for_loss:
                    # Replace -100 in the labels as we can't decode them.
                    labels = np.where(labels != -100, labels,
                                      tokenizer.pad_token_id)

                decoded_preds = tokenizer.batch_decode(
                    generated_tokens, skip_special_tokens=True)
                decoded_labels = tokenizer.batch_decode(
                    labels, skip_special_tokens=True)

                decoded_preds, decoded_labels = postprocess_text(
                    decoded_preds, decoded_labels)

                metric.add_batch(predictions=decoded_preds,
                                 references=decoded_labels)
        eval_metric = metric.compute()
        logger.info({"bleu": eval_metric["score"]})

    if args.output_dir is not None:
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(args.output_dir,
                                        save_function=accelerator.save)
示例#22
0
def main():
    args = parse_args()

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    # If we're using tracking, we also need to initialize it here and it will pick up all supported trackers in the environment
    accelerator = Accelerator(
        log_with="all",
        logging_dir=args.output_dir) if args.with_tracking else Accelerator()
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name,
                                               token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"),
                      "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()

    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).

    # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
    # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
    # label if at least two columns are provided.

    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)

    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if args.task_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset("glue", args.task_name)
    else:
        # Loading the dataset from local csv or json file.
        data_files = {}
        if args.train_file is not None:
            data_files["train"] = args.train_file
        if args.validation_file is not None:
            data_files["validation"] = args.validation_file
        extension = (args.train_file if args.train_file is not None else
                     args.valid_file).split(".")[-1]
        raw_datasets = load_dataset(extension, data_files=data_files)
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Labels
    if args.task_name is not None:
        is_regression = args.task_name == "stsb"
        if not is_regression:
            label_list = raw_datasets["train"].features["label"].names
            num_labels = len(label_list)
        else:
            num_labels = 1
    else:
        # Trying to have good defaults here, don't hesitate to tweak to your needs.
        is_regression = raw_datasets["train"].features["label"].dtype in [
            "float32", "float64"
        ]
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
            label_list = raw_datasets["train"].unique("label")
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)

    # Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(args.model_name_or_path,
                                        num_labels=num_labels,
                                        finetuning_task=args.task_name)
    tokenizer = AutoTokenizer.from_pretrained(
        args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
    model = AutoModelForSequenceClassification.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        ignore_mismatched_sizes=args.ignore_mismatched_sizes,
    )

    # Preprocessing the datasets
    if args.task_name is not None:
        sentence1_key, sentence2_key = task_to_keys[args.task_name]
    else:
        # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
        non_label_column_names = [
            name for name in raw_datasets["train"].column_names
            if name != "label"
        ]
        if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
            sentence1_key, sentence2_key = "sentence1", "sentence2"
        else:
            if len(non_label_column_names) >= 2:
                sentence1_key, sentence2_key = non_label_column_names[:2]
            else:
                sentence1_key, sentence2_key = non_label_column_names[0], None

    # Some models have set the order of the labels to use, so let's make sure we do use it.
    label_to_id = None
    if (model.config.label2id !=
            PretrainedConfig(num_labels=num_labels).label2id
            and args.task_name is not None and not is_regression):
        # Some have all caps in their config, some don't.
        label_name_to_id = {
            k.lower(): v
            for k, v in model.config.label2id.items()
        }
        if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
            logger.info(
                f"The configuration of the model provided the following label correspondence: {label_name_to_id}. "
                "Using it!")
            label_to_id = {
                i: label_name_to_id[label_list[i]]
                for i in range(num_labels)
            }
        else:
            logger.warning(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
                f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
                "\nIgnoring the model labels as a result.",
            )
    elif args.task_name is None:
        label_to_id = {v: i for i, v in enumerate(label_list)}

    if label_to_id is not None:
        model.config.label2id = label_to_id
        model.config.id2label = {
            id: label
            for label, id in config.label2id.items()
        }
    elif args.task_name is not None and not is_regression:
        model.config.label2id = {l: i for i, l in enumerate(label_list)}
        model.config.id2label = {
            id: label
            for label, id in config.label2id.items()
        }

    padding = "max_length" if args.pad_to_max_length else False

    def preprocess_function(examples):
        # Tokenize the texts
        texts = ((examples[sentence1_key], ) if sentence2_key is None else
                 (examples[sentence1_key], examples[sentence2_key]))
        result = tokenizer(*texts,
                           padding=padding,
                           max_length=args.max_length,
                           truncation=True)

        if "label" in examples:
            if label_to_id is not None:
                # Map labels to IDs (not necessary for GLUE tasks)
                result["labels"] = [label_to_id[l] for l in examples["label"]]
            else:
                # In all cases, rename the column to labels because the model will expect that.
                result["labels"] = examples["label"]
        return result

    with accelerator.main_process_first():
        processed_datasets = raw_datasets.map(
            preprocess_function,
            batched=True,
            remove_columns=raw_datasets["train"].column_names,
            desc="Running tokenizer on dataset",
        )

    train_dataset = processed_datasets["train"]
    eval_dataset = processed_datasets["validation_matched" if args.task_name ==
                                      "mnli" else "validation"]

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(
            f"Sample {index} of the training set: {train_dataset[index]}.")

    # DataLoaders creation:
    if args.pad_to_max_length:
        # If padding was already done ot max length, we use the default data collator that will just convert everything
        # to tensors.
        data_collator = default_data_collator
    else:
        # Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of
        # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
        # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
        data_collator = DataCollatorWithPadding(
            tokenizer,
            pad_to_multiple_of=(8 if accelerator.use_fp16 else None))

    train_dataloader = DataLoader(train_dataset,
                                  shuffle=True,
                                  collate_fn=data_collator,
                                  batch_size=args.per_device_train_batch_size)
    eval_dataloader = DataLoader(eval_dataset,
                                 collate_fn=data_collator,
                                 batch_size=args.per_device_eval_batch_size)

    # Optimizer
    # Split weights in two groups, one with weight decay and the other not.
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            args.weight_decay,
        },
        {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0,
        },
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)

    # Scheduler and math around the number of training steps.
    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    else:
        args.num_train_epochs = math.ceil(args.max_train_steps /
                                          num_update_steps_per_epoch)

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader, lr_scheduler)

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / args.gradient_accumulation_steps)
    args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch

    # Figure out how many steps we should save the Accelerator states
    if hasattr(args.checkpointing_steps, "isdigit"):
        checkpointing_steps = args.checkpointing_steps
        if args.checkpointing_steps.isdigit():
            checkpointing_steps = int(args.checkpointing_steps)
    else:
        checkpointing_steps = None

    # We need to initialize the trackers we use, and also store our configuration
    if args.with_tracking:
        experiment_config = vars(args)
        # TensorBoard cannot log Enums, need the raw value
        experiment_config["lr_scheduler_type"] = experiment_config[
            "lr_scheduler_type"].value
        accelerator.init_trackers("glue_no_trainer", experiment_config)

    # Get the metric function
    if args.task_name is not None:
        metric = load_metric("glue", args.task_name)
    else:
        metric = load_metric("accuracy")

    # Train!
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(
        f"  Instantaneous batch size per device = {args.per_device_train_batch_size}"
    )
    logger.info(
        f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
    )
    logger.info(
        f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps),
                        disable=not accelerator.is_local_main_process)
    completed_steps = 0
    starting_epoch = 0
    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
            accelerator.print(
                f"Resumed from checkpoint: {args.resume_from_checkpoint}")
            accelerator.load_state(args.resume_from_checkpoint)
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
            dirs.sort(key=os.path.getctime)
            path = dirs[
                -1]  # Sorts folders by date modified, most recent checkpoint is the last
        # Extract `epoch_{i}` or `step_{i}`
        training_difference = os.path.splitext(path)[0]

        if "epoch" in training_difference:
            starting_epoch = int(training_difference.replace("epoch_", "")) + 1
            resume_step = None
        else:
            resume_step = int(training_difference.replace("step_", ""))
            starting_epoch = resume_step // len(train_dataloader)
            resume_step -= starting_epoch * len(train_dataloader)

    for epoch in range(starting_epoch, args.num_train_epochs):
        model.train()
        if args.with_tracking:
            total_loss = 0
        for step, batch in enumerate(train_dataloader):
            # We need to skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == starting_epoch:
                if resume_step is not None and step < resume_step:
                    completed_steps += 1
                    continue
            outputs = model(**batch)
            loss = outputs.loss
            # We keep track of the loss at each epoch
            if args.with_tracking:
                total_loss += loss.detach().float()
            loss = loss / args.gradient_accumulation_steps
            accelerator.backward(loss)
            if step % args.gradient_accumulation_steps == 0 or step == len(
                    train_dataloader) - 1:
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                completed_steps += 1

            if isinstance(checkpointing_steps, int):
                if completed_steps % checkpointing_steps == 0:
                    output_dir = f"step_{completed_steps }"
                    if args.output_dir is not None:
                        output_dir = os.path.join(args.output_dir, output_dir)
                    accelerator.save_state(output_dir)

            if completed_steps >= args.max_train_steps:
                break

        model.eval()
        samples_seen = 0
        for step, batch in enumerate(eval_dataloader):
            with torch.no_grad():
                outputs = model(**batch)
            predictions = outputs.logits.argmax(
                dim=-1) if not is_regression else outputs.logits.squeeze()
            predictions, references = accelerator.gather(
                (predictions, batch["labels"]))
            # If we are in a multiprocess environment, the last batch has duplicates
            if accelerator.num_processes > 1:
                if step == len(eval_dataloader) - 1:
                    predictions = predictions[:len(eval_dataloader.dataset) -
                                              samples_seen]
                    references = references[:len(eval_dataloader.dataset) -
                                            samples_seen]
                else:
                    samples_seen += references.shape[0]
            metric.add_batch(
                predictions=predictions,
                references=references,
            )

        eval_metric = metric.compute()
        logger.info(f"epoch {epoch}: {eval_metric}")

        if args.with_tracking:
            accelerator.log(
                {
                    "accuracy" if args.task_name is not None else "glue":
                    eval_metric,
                    "train_loss": total_loss,
                    "epoch": epoch,
                    "step": completed_steps,
                }, )

        if args.push_to_hub and epoch < args.num_train_epochs - 1:
            accelerator.wait_for_everyone()
            unwrapped_model = accelerator.unwrap_model(model)
            unwrapped_model.save_pretrained(
                args.output_dir,
                is_main_process=accelerator.is_main_process,
                save_function=accelerator.save)
            if accelerator.is_main_process:
                tokenizer.save_pretrained(args.output_dir)
                repo.push_to_hub(
                    commit_message=f"Training in progress epoch {epoch}",
                    blocking=False,
                    auto_lfs_prune=True)

        if args.checkpointing_steps == "epoch":
            output_dir = f"epoch_{epoch}"
            if args.output_dir is not None:
                output_dir = os.path.join(args.output_dir, output_dir)
            accelerator.save_state(output_dir)

    if args.output_dir is not None:
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(
            args.output_dir,
            is_main_process=accelerator.is_main_process,
            save_function=accelerator.save)
        if accelerator.is_main_process:
            tokenizer.save_pretrained(args.output_dir)
            if args.push_to_hub:
                repo.push_to_hub(commit_message="End of training",
                                 auto_lfs_prune=True)

    if args.task_name == "mnli":
        # Final evaluation on mismatched validation set
        eval_dataset = processed_datasets["validation_mismatched"]
        eval_dataloader = DataLoader(
            eval_dataset,
            collate_fn=data_collator,
            batch_size=args.per_device_eval_batch_size)
        eval_dataloader = accelerator.prepare(eval_dataloader)

        model.eval()
        for step, batch in enumerate(eval_dataloader):
            outputs = model(**batch)
            predictions = outputs.logits.argmax(dim=-1)
            metric.add_batch(
                predictions=accelerator.gather(predictions),
                references=accelerator.gather(batch["labels"]),
            )

        eval_metric = metric.compute()
        logger.info(f"mnli-mm: {eval_metric}")

    if args.output_dir is not None:
        with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
            json.dump({"eval_accuracy": eval_metric["accuracy"]}, f)
示例#23
0
def main():
    args = arg_parser()
    # turn on benchmark mode
    torch.backends.cudnn.benchmark = True

    accelerator = Accelerator(fp16=args.use_fp16)

    if accelerator.is_main_process:
        # setup logger
        os.makedirs(args.log_dir, exist_ok=True)
        time_stamp = time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())
        logger = get_root_logger(logger_name='MOD', log_file=os.path.join(
            args.log_dir, f'{time_stamp}.log'))
        writer = SummaryWriter(log_dir=os.path.join(args.log_dir, 'tf_logs'))
        # log env info
        logger.info('--------------------Env info--------------------')
        for key, value in sorted(collect_env().items()):
            logger.info(str(key) + ': ' + str(value))
        # log args
        logger.info('----------------------Args-----------------------')
        for key, value in sorted(vars(args).items()):
            logger.info(str(key) + ': ' + str(value))
        logger.info('---------------------------------------------------')

    # train_dataset = MOD(root=args.root, annfile=args.train_annfile)
    train_dataset = MOD_3d(
        root=args.root, annfile=args.train_annfile, clip_length=args.clip_length)
    train_dataloader = DataLoader(train_dataset, batch_size=args.samples_per_gpu,
                                  shuffle=True, num_workers=args.num_workers, pin_memory=True)
    # val dataloader
    # val_dataset = MOD(root=args.root, annfile=args.val_annfile, val=True)
    val_dataset = MOD_3d(root=args.root, annfile=args.val_annfile,
                         val=True, clip_length=args.clip_length)
    val_dataloader = DataLoader(val_dataset, batch_size=args.samples_per_gpu,
                                shuffle=False, num_workers=args.num_workers, pin_memory=True)

    # define model
    # model = TinyUNet(
    #     n_channels=1, n_classes=train_dataset.num_classes, upsample='bilinear')
    # replace2dwith3d(model=model)
    model = TinyUNet3d(n_channels=1, n_classes=2)
    # optimizer
    init_lr = args.base_lr*dist.get_world_size()*args.samples_per_gpu/16
    optimizer = optim.SGD(model.parameters(), lr=init_lr,
                          weight_decay=1e-4, momentum=0.9)
    # recover states
    start_epoch = 1
    if args.resume is not None:
        ckpt: dict() = torch.load(args.resume, map_location='cpu')
        model.load_state_dict(ckpt['state_dict'])
        optimizer.load_state_dict(ckpt['optimizer'])
        start_epoch = ckpt['epoch']+1
        if accelerator.is_main_process:
            logger.info(f"Resume from epoch {start_epoch-1}...")
    else:
        if accelerator.is_main_process:
            logger.info("Start training from scratch...")
    # convert BatchNorm to SyncBatchNorm
    model = SyncBatchNorm.convert_sync_batchnorm(model)
    # prepare to be DDP models
    model, optimizer, train_dataloader, val_dataloader = accelerator.prepare(
        model, optimizer, train_dataloader, val_dataloader)
    # closed_form lr_scheduler
    total_steps = len(train_dataloader)*args.epochs
    resume_step = len(train_dataloader)*(start_epoch-1)
    lr_scheduler = ClosedFormCosineLRScheduler(
        optimizer, init_lr, total_steps, resume_step)
    # loss criterion
    criterion = CrossEntropyLoss(weight=torch.tensor([1., 10.]), ignore_index=255).to(
        accelerator.device)  # 
    # training
    # Best acc
    best_miou = 0.
    for e in range(start_epoch, args.epochs+1):
        model.train()
        for i, batch in enumerate(train_dataloader):
            img, mask = batch
            logits = model(img)
            loss = criterion(logits, mask)
            accelerator.backward(loss)
            # clip grad if true
            if args.clip_grad_norm is not None:
                grad_norm = accelerator.clip_grad_norm_(
                    model.parameters(), args.clip_grad_norm)
            optimizer.step()
            optimizer.zero_grad()
            # sync before logging
            accelerator.wait_for_everyone()
            ## log and tensorboard
            if accelerator.is_main_process:
                if i % args.log_interval == 0:
                    writer.add_scalar('loss', loss.item(),
                                      (e-1)*len(train_dataloader)+i)
                    lr = optimizer.param_groups[0]['lr']
                    writer.add_scalar('lr', lr,
                                      (e-1)*len(train_dataloader)+i)
                    loss_str = f"loss: {loss.item():.4f}"
                    epoch_iter_str = f"Epoch: [{e}] [{i}/{len(train_dataloader)}], "
                    if args.clip_grad_norm is not None:
                        logger.info(
                            epoch_iter_str+f'lr: {lr}, '+loss_str+f', grad_norm: {grad_norm}')
                    else:
                        logger.info(epoch_iter_str+f'lr: {lr}, '+loss_str)

            lr_scheduler.step()
        if accelerator.is_main_process:
            if e % args.save_interval == 0:
                save_path = os.path.join(args.log_dir, f'epoch_{e}.pth')
                torch.save(
                    {'state_dict': model.module.state_dict(), 'epoch': e, 'args': args,
                        'optimizer': optimizer.state_dict()}, save_path)
                logger.info(f"Checkpoint has been saved at {save_path}")
        # start to evaluate
        if accelerator.is_main_process:
            logger.info("Evaluate on validation dataset")
            bar = tqdm(total=len(val_dataloader))
        model.eval()
        preds = []
        gts = []
        for batch in val_dataloader:
            img, mask = batch
            with torch.no_grad():
                logits = model(img)
                pred = accelerator.gather(logits)
                gt = accelerator.gather(mask)
            preds.append(pred)
            gts.append(gt)
            if accelerator.is_main_process:
                bar.update(accelerator.num_processes)
        if accelerator.is_main_process:
            bar.close()
            # compute metrics
            # prepare preds
            preds = torch.cat(preds)[:len(val_dataloader.dataset)]
            preds = average_preds(preds, window=args.clip_length)  # NCHW
            preds = F.softmax(preds, dim=1)
            preds = torch.argmax(preds, dim=1)  # NHW
            # prepare gts
            gts = torch.cat(gts)[:len(val_dataloader.dataset)]  # NTHW
            gts = flat_gts(gts, window=args.clip_length)  # NHW
            # accuarcy
            acc = accuarcy(preds, gts, ignore_index=0, average='micro')
            # mIoU
            miou = mIoU(preds, gts, ignore_index=0)
            logger.info(f"Accuracy on Val dataset: {acc:.4f}")
            logger.info(f"Mean IoU on Val dataset: {miou:.4f}")
            # save preds
            if miou > best_miou:
                best_miou = miou
                val_results_dir = os.path.join(
                    args.log_dir, 'best_val_results')
                os.makedirs(val_results_dir, exist_ok=True)
                imgpaths = flat_paths(val_dataset.imgpaths)
                assert preds.shape[0] == len(imgpaths)
                preds = preds.cpu().numpy()
                for i in range(preds.shape[0]):
                    imgname = imgpaths[i].split('/')[-1]
                    imgpath = os.path.join(val_results_dir, imgname)
                    result = preds[i].astype(np.uint8)
                    result[result == 1] = 255
                    result = Image.fromarray(result)
                    result.save(imgpath)
        # delete unuseful vars
        del preds
        del gts
        accelerator.wait_for_everyone()
示例#24
0
def main():
    args = parse_args()

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    # If we're using tracking, we also need to initialize it here and it will pick up all supported trackers in the environment
    accelerator = Accelerator(log_with="all", logging_dir=args.output_dir) if args.with_tracking else Accelerator()
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
    else:
        data_files = {}
        if args.train_file is not None:
            data_files["train"] = args.train_file
        if args.validation_file is not None:
            data_files["validation"] = args.validation_file
        if args.test_file is not None:
            data_files["test"] = args.test_file
        extension = args.train_file.split(".")[-1]
        raw_datasets = load_dataset(extension, data_files=data_files, field="data")
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    config = XLNetConfig.from_pretrained(args.model_name_or_path)
    tokenizer = XLNetTokenizerFast.from_pretrained(args.model_name_or_path)
    model = XLNetForQuestionAnswering.from_pretrained(
        args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config
    )

    # Preprocessing the datasets.
    # Preprocessing is slighlty different for training and evaluation.
    column_names = raw_datasets["train"].column_names

    question_column_name = "question" if "question" in column_names else column_names[0]
    context_column_name = "context" if "context" in column_names else column_names[1]
    answer_column_name = "answers" if "answers" in column_names else column_names[2]

    # Padding side determines if we do (question|context) or (context|question).
    pad_on_right = tokenizer.padding_side == "right"

    if args.max_seq_length > tokenizer.model_max_length:
        logger.warning(
            f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )

    max_seq_length = min(args.max_seq_length, tokenizer.model_max_length)

    # Training preprocessing
    def prepare_train_features(examples):
        # Some of the questions have lots of whitespace on the left, which is not useful and will make the
        # truncation of the context fail (the tokenized question will take a lots of space). So we remove that
        # left whitespace
        examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]]

        # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
        # in one example possible giving several features when a context is long, each of those features having a
        # context that overlaps a bit the context of the previous feature.
        tokenized_examples = tokenizer(
            examples[question_column_name if pad_on_right else context_column_name],
            examples[context_column_name if pad_on_right else question_column_name],
            truncation="only_second" if pad_on_right else "only_first",
            max_length=max_seq_length,
            stride=args.doc_stride,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            return_special_tokens_mask=True,
            return_token_type_ids=True,
            padding="max_length",
        )

        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
        # The offset mappings will give us a map from token to character position in the original context. This will
        # help us compute the start_positions and end_positions.
        offset_mapping = tokenized_examples.pop("offset_mapping")
        # The special tokens will help us build the p_mask (which indicates the tokens that can't be in answers).
        special_tokens = tokenized_examples.pop("special_tokens_mask")

        # Let's label those examples!
        tokenized_examples["start_positions"] = []
        tokenized_examples["end_positions"] = []
        tokenized_examples["is_impossible"] = []
        tokenized_examples["cls_index"] = []
        tokenized_examples["p_mask"] = []

        for i, offsets in enumerate(offset_mapping):
            # We will label impossible answers with the index of the CLS token.
            input_ids = tokenized_examples["input_ids"][i]
            cls_index = input_ids.index(tokenizer.cls_token_id)
            tokenized_examples["cls_index"].append(cls_index)

            # Grab the sequence corresponding to that example (to know what is the context and what is the question).
            sequence_ids = tokenized_examples["token_type_ids"][i]
            for k, s in enumerate(special_tokens[i]):
                if s:
                    sequence_ids[k] = 3
            context_idx = 1 if pad_on_right else 0

            # Build the p_mask: non special tokens and context gets 0.0, the others get 1.0.
            # The cls token gets 1.0 too (for predictions of empty answers).
            tokenized_examples["p_mask"].append(
                [
                    0.0 if (not special_tokens[i][k] and s == context_idx) or k == cls_index else 1.0
                    for k, s in enumerate(sequence_ids)
                ]
            )

            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            answers = examples[answer_column_name][sample_index]
            # If no answers are given, set the cls_index as answer.
            if len(answers["answer_start"]) == 0:
                tokenized_examples["start_positions"].append(cls_index)
                tokenized_examples["end_positions"].append(cls_index)
                tokenized_examples["is_impossible"].append(1.0)
            else:
                # Start/end character index of the answer in the text.
                start_char = answers["answer_start"][0]
                end_char = start_char + len(answers["text"][0])

                # Start token index of the current span in the text.
                token_start_index = 0
                while sequence_ids[token_start_index] != context_idx:
                    token_start_index += 1

                # End token index of the current span in the text.
                token_end_index = len(input_ids) - 1
                while sequence_ids[token_end_index] != context_idx:
                    token_end_index -= 1
                # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index).
                if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char):
                    tokenized_examples["start_positions"].append(cls_index)
                    tokenized_examples["end_positions"].append(cls_index)
                    tokenized_examples["is_impossible"].append(1.0)
                else:
                    # Otherwise move the token_start_index and token_end_index to the two ends of the answer.
                    # Note: we could go after the last offset if the answer is the last word (edge case).
                    while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char:
                        token_start_index += 1
                    tokenized_examples["start_positions"].append(token_start_index - 1)
                    while offsets[token_end_index][1] >= end_char:
                        token_end_index -= 1
                    tokenized_examples["end_positions"].append(token_end_index + 1)
                    tokenized_examples["is_impossible"].append(0.0)

        return tokenized_examples

    if "train" not in raw_datasets:
        raise ValueError("--do_train requires a train dataset")
    train_dataset = raw_datasets["train"]
    if args.max_train_samples is not None:
        # We will select sample from whole data if agument is specified
        train_dataset = train_dataset.select(range(args.max_train_samples))
    # Create train feature from dataset
    with accelerator.main_process_first():
        train_dataset = train_dataset.map(
            prepare_train_features,
            batched=True,
            num_proc=args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not args.overwrite_cache,
            desc="Running tokenizer on train dataset",
        )
    if args.max_train_samples is not None:
        # Number of samples might increase during Feature Creation, We select only specified max samples
        train_dataset = train_dataset.select(range(args.max_train_samples))

    # Validation preprocessing
    def prepare_validation_features(examples):
        # Some of the questions have lots of whitespace on the left, which is not useful and will make the
        # truncation of the context fail (the tokenized question will take a lots of space). So we remove that
        # left whitespace
        examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]]

        # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
        # in one example possible giving several features when a context is long, each of those features having a
        # context that overlaps a bit the context of the previous feature.
        tokenized_examples = tokenizer(
            examples[question_column_name if pad_on_right else context_column_name],
            examples[context_column_name if pad_on_right else question_column_name],
            truncation="only_second" if pad_on_right else "only_first",
            max_length=max_seq_length,
            stride=args.doc_stride,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            return_special_tokens_mask=True,
            return_token_type_ids=True,
            padding="max_length",
        )

        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")

        # The special tokens will help us build the p_mask (which indicates the tokens that can't be in answers).
        special_tokens = tokenized_examples.pop("special_tokens_mask")

        # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
        # corresponding example_id and we will store the offset mappings.
        tokenized_examples["example_id"] = []

        # We still provide the index of the CLS token and the p_mask to the model, but not the is_impossible label.
        tokenized_examples["cls_index"] = []
        tokenized_examples["p_mask"] = []

        for i, input_ids in enumerate(tokenized_examples["input_ids"]):
            # Find the CLS token in the input ids.
            cls_index = input_ids.index(tokenizer.cls_token_id)
            tokenized_examples["cls_index"].append(cls_index)

            # Grab the sequence corresponding to that example (to know what is the context and what is the question).
            sequence_ids = tokenized_examples["token_type_ids"][i]
            for k, s in enumerate(special_tokens[i]):
                if s:
                    sequence_ids[k] = 3
            context_idx = 1 if pad_on_right else 0

            # Build the p_mask: non special tokens and context gets 0.0, the others 1.0.
            tokenized_examples["p_mask"].append(
                [
                    0.0 if (not special_tokens[i][k] and s == context_idx) or k == cls_index else 1.0
                    for k, s in enumerate(sequence_ids)
                ]
            )

            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            tokenized_examples["example_id"].append(examples["id"][sample_index])

            # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
            # position is part of the context or not.
            tokenized_examples["offset_mapping"][i] = [
                (o if sequence_ids[k] == context_idx else None)
                for k, o in enumerate(tokenized_examples["offset_mapping"][i])
            ]

        return tokenized_examples

    if "validation" not in raw_datasets:
        raise ValueError("--do_eval requires a validation dataset")
    eval_examples = raw_datasets["validation"]
    if args.max_eval_samples is not None:
        # We will select sample from whole data
        eval_examples = eval_examples.select(range(args.max_eval_samples))
    # Validation Feature Creation
    with accelerator.main_process_first():
        eval_dataset = eval_examples.map(
            prepare_validation_features,
            batched=True,
            num_proc=args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not args.overwrite_cache,
            desc="Running tokenizer on validation dataset",
        )

    if args.max_eval_samples is not None:
        # During Feature creation dataset samples might increase, we will select required samples again
        eval_dataset = eval_dataset.select(range(args.max_eval_samples))

    if args.do_predict:
        if "test" not in raw_datasets:
            raise ValueError("--do_predict requires a test dataset")
        predict_examples = raw_datasets["test"]
        if args.max_predict_samples is not None:
            # We will select sample from whole data
            predict_examples = predict_examples.select(range(args.max_predict_samples))
        # Predict Feature Creation
        with accelerator.main_process_first():
            predict_dataset = predict_examples.map(
                prepare_validation_features,
                batched=True,
                num_proc=args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
            if args.max_predict_samples is not None:
                # During Feature creation dataset samples might increase, we will select required samples again
                predict_dataset = predict_dataset.select(range(args.max_predict_samples))

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")

    # DataLoaders creation:
    if args.pad_to_max_length:
        # If padding was already done ot max length, we use the default data collator that will just convert everything
        # to tensors.
        data_collator = default_data_collator
    else:
        # Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of
        # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
        # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None))

    train_dataloader = DataLoader(
        train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
    )

    eval_dataset_for_model = eval_dataset.remove_columns(["example_id", "offset_mapping"])
    eval_dataloader = DataLoader(
        eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
    )

    if args.do_predict:
        predict_dataset_for_model = predict_dataset.remove_columns(["example_id", "offset_mapping"])
        predict_dataloader = DataLoader(
            predict_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
        )

    # Post-processing:
    def post_processing_function(examples, features, predictions, stage="eval"):
        # Post-processing: we match the start logits and end logits to answers in the original context.
        predictions, scores_diff_json = postprocess_qa_predictions_with_beam_search(
            examples=examples,
            features=features,
            predictions=predictions,
            version_2_with_negative=args.version_2_with_negative,
            n_best_size=args.n_best_size,
            max_answer_length=args.max_answer_length,
            start_n_top=model.config.start_n_top,
            end_n_top=model.config.end_n_top,
            output_dir=args.output_dir,
            prefix=stage,
        )
        # Format the result to the format the metric expects.
        if args.version_2_with_negative:
            formatted_predictions = [
                {"id": k, "prediction_text": v, "no_answer_probability": scores_diff_json[k]}
                for k, v in predictions.items()
            ]
        else:
            formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()]

        references = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples]
        return EvalPrediction(predictions=formatted_predictions, label_ids=references)

    metric = load_metric("squad_v2" if args.version_2_with_negative else "squad")

    def create_and_fill_np_array(start_or_end_logits, dataset, max_len):
        """
        Create and fill numpy array of size len_of_validation_data * max_length_of_output_tensor

        Args:
            start_or_end_logits(:obj:`tensor`):
                This is the output predictions of the model. We can only enter either start or end logits.
            eval_dataset: Evaluation dataset
            max_len(:obj:`int`):
                The maximum length of the output tensor. ( See the model.eval() part for more details )
        """

        step = 0
        # create a numpy array and fill it with -100.
        logits_concat = np.full((len(dataset), max_len), -100, dtype=np.float32)
        # Now since we have create an array now we will populate it with the outputs gathered using accelerator.gather
        for i, output_logit in enumerate(start_or_end_logits):  # populate columns
            # We have to fill it such that we have to take the whole tensor and replace it on the newly created array
            # And after every iteration we have to change the step

            batch_size = output_logit.shape[0]
            cols = output_logit.shape[1]
            if step + batch_size < len(dataset):
                logits_concat[step : step + batch_size, :cols] = output_logit
            else:
                logits_concat[step:, :cols] = output_logit[: len(dataset) - step]

            step += batch_size

        return logits_concat

    # Optimizer
    # Split weights in two groups, one with weight decay and the other not.
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {
            "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
            "weight_decay": 0.0,
        },
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)

    # Scheduler and math around the number of training steps.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    else:
        args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
    )

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch

    # Figure out how many steps we should save the Accelerator states
    if hasattr(args.checkpointing_steps, "isdigit"):
        checkpointing_steps = args.checkpointing_steps
        if args.checkpointing_steps.isdigit():
            checkpointing_steps = int(args.checkpointing_steps)
    else:
        checkpointing_steps = None

    # We need to initialize the trackers we use, and also store our configuration
    if args.with_tracking:
        experiment_config = vars(args)
        # TensorBoard cannot log Enums, need the raw value
        experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
        accelerator.init_trackers("qa_beam_search_no_trainer", experiment_config)

    # Train!
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.per_device_train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")

    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
    completed_steps = 0
    starting_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
            accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
            accelerator.load_state(args.resume_from_checkpoint)
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
            dirs.sort(key=os.path.getctime)
            path = dirs[-1]  # Sorts folders by date modified, most recent checkpoint is the last
        # Extract `epoch_{i}` or `step_{i}`
        training_difference = os.path.splitext(path)[0]

        if "epoch" in training_difference:
            starting_epoch = int(training_difference.replace("epoch_", "")) + 1
            resume_step = None
        else:
            resume_step = int(training_difference.replace("step_", ""))
            starting_epoch = resume_step // len(train_dataloader)
            resume_step -= starting_epoch * len(train_dataloader)

    for epoch in range(starting_epoch, args.num_train_epochs):
        model.train()
        if args.with_tracking:
            total_loss = 0
        for step, batch in enumerate(train_dataloader):
            # We need to skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == starting_epoch:
                if resume_step is not None and step < resume_step:
                    completed_steps += 1
                    continue
            outputs = model(**batch)
            loss = outputs.loss
            # We keep track of the loss at each epoch
            if args.with_tracking:
                total_loss += loss.detach().float()
            loss = loss / args.gradient_accumulation_steps
            accelerator.backward(loss)
            if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                completed_steps += 1

            if isinstance(checkpointing_steps, int):
                if completed_steps % checkpointing_steps == 0:
                    accelerator.save_state(f"step_{completed_steps}")

            if completed_steps >= args.max_train_steps:
                break

        if args.push_to_hub and epoch < args.num_train_epochs - 1:
            accelerator.wait_for_everyone()
            unwrapped_model = accelerator.unwrap_model(model)
            unwrapped_model.save_pretrained(
                args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
            )
            if accelerator.is_main_process:
                tokenizer.save_pretrained(args.output_dir)
                repo.push_to_hub(
                    commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
                )

    # intialize all lists to collect the batches
    all_start_top_log_probs = []
    all_start_top_index = []
    all_end_top_log_probs = []
    all_end_top_index = []
    all_cls_logits = []

    model.eval()

    for step, batch in enumerate(eval_dataloader):
        with torch.no_grad():
            outputs = model(**batch)
            start_top_log_probs = outputs.start_top_log_probs
            start_top_index = outputs.start_top_index
            end_top_log_probs = outputs.end_top_log_probs
            end_top_index = outputs.end_top_index
            cls_logits = outputs.cls_logits

            if not args.pad_to_max_length:  # necessary to pad predictions and labels for being gathered
                start_top_log_probs = accelerator.pad_across_processes(start_top_log_probs, dim=1, pad_index=-100)
                start_top_index = accelerator.pad_across_processes(start_top_index, dim=1, pad_index=-100)
                end_top_log_probs = accelerator.pad_across_processes(end_top_log_probs, dim=1, pad_index=-100)
                end_top_index = accelerator.pad_across_processes(end_top_index, dim=1, pad_index=-100)
                cls_logits = accelerator.pad_across_processes(cls_logits, dim=1, pad_index=-100)

            all_start_top_log_probs.append(accelerator.gather(start_top_log_probs).cpu().numpy())
            all_start_top_index.append(accelerator.gather(start_top_index).cpu().numpy())
            all_end_top_log_probs.append(accelerator.gather(end_top_log_probs).cpu().numpy())
            all_end_top_index.append(accelerator.gather(end_top_index).cpu().numpy())
            all_cls_logits.append(accelerator.gather(cls_logits).cpu().numpy())

    max_len = max([x.shape[1] for x in all_end_top_log_probs])  # Get the max_length of the tensor

    # concatenate all numpy arrays collected above
    start_top_log_probs_concat = create_and_fill_np_array(all_start_top_log_probs, eval_dataset, max_len)
    start_top_index_concat = create_and_fill_np_array(all_start_top_index, eval_dataset, max_len)
    end_top_log_probs_concat = create_and_fill_np_array(all_end_top_log_probs, eval_dataset, max_len)
    end_top_index_concat = create_and_fill_np_array(all_end_top_index, eval_dataset, max_len)
    cls_logits_concat = np.concatenate(all_cls_logits, axis=0)

    # delete the list of numpy arrays
    del start_top_log_probs
    del start_top_index
    del end_top_log_probs
    del end_top_index
    del cls_logits

    outputs_numpy = (
        start_top_log_probs_concat,
        start_top_index_concat,
        end_top_log_probs_concat,
        end_top_index_concat,
        cls_logits_concat,
    )
    prediction = post_processing_function(eval_examples, eval_dataset, outputs_numpy)
    eval_metric = metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
    logger.info(f"Evaluation metrics: {eval_metric}")

    if args.do_predict:
        # intialize all lists to collect the batches

        all_start_top_log_probs = []
        all_start_top_index = []
        all_end_top_log_probs = []
        all_end_top_index = []
        all_cls_logits = []

        model.eval()

        for step, batch in enumerate(predict_dataloader):
            with torch.no_grad():
                outputs = model(**batch)
                start_top_log_probs = outputs.start_top_log_probs
                start_top_index = outputs.start_top_index
                end_top_log_probs = outputs.end_top_log_probs
                end_top_index = outputs.end_top_index
                cls_logits = outputs.cls_logits

                if not args.pad_to_max_length:  # necessary to pad predictions and labels for being gathered
                    start_top_log_probs = accelerator.pad_across_processes(start_top_log_probs, dim=1, pad_index=-100)
                    start_top_index = accelerator.pad_across_processes(start_top_index, dim=1, pad_index=-100)
                    end_top_log_probs = accelerator.pad_across_processes(end_top_log_probs, dim=1, pad_index=-100)
                    end_top_index = accelerator.pad_across_processes(end_top_index, dim=1, pad_index=-100)
                    cls_logits = accelerator.pad_across_processes(cls_logits, dim=1, pad_index=-100)

                all_start_top_log_probs.append(accelerator.gather(start_top_log_probs).cpu().numpy())
                all_start_top_index.append(accelerator.gather(start_top_index).cpu().numpy())
                all_end_top_log_probs.append(accelerator.gather(end_top_log_probs).cpu().numpy())
                all_end_top_index.append(accelerator.gather(end_top_index).cpu().numpy())
                all_cls_logits.append(accelerator.gather(cls_logits).cpu().numpy())

        max_len = max([x.shape[1] for x in all_end_top_log_probs])  # Get the max_length of the tensor

        # concatenate all numpy arrays collected above
        start_top_log_probs_concat = create_and_fill_np_array(all_start_top_log_probs, predict_dataset, max_len)
        start_top_index_concat = create_and_fill_np_array(all_start_top_index, predict_dataset, max_len)
        end_top_log_probs_concat = create_and_fill_np_array(all_end_top_log_probs, predict_dataset, max_len)
        end_top_index_concat = create_and_fill_np_array(all_end_top_index, predict_dataset, max_len)
        cls_logits_concat = np.concatenate(all_cls_logits, axis=0)

        # delete the list of numpy arrays
        del start_top_log_probs
        del start_top_index
        del end_top_log_probs
        del end_top_index
        del cls_logits

        outputs_numpy = (
            start_top_log_probs_concat,
            start_top_index_concat,
            end_top_log_probs_concat,
            end_top_index_concat,
            cls_logits_concat,
        )

        prediction = post_processing_function(predict_examples, predict_dataset, outputs_numpy)
        predict_metric = metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
        logger.info(f"Predict metrics: {predict_metric}")

    if args.with_tracking:
        log = {
            "squad_v2" if args.version_2_with_negative else "squad": eval_metric,
            "train_loss": total_loss,
            "epoch": epoch,
            "step": completed_steps,
        }
        if args.do_predict:
            log["squad_v2_predict" if args.version_2_with_negative else "squad_predict"] = predict_metric

        accelerator.log(log)

    if args.checkpointing_steps == "epoch":
        accelerator.save_state(f"epoch_{epoch}")

    if args.output_dir is not None:
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(
            args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
        )
        if accelerator.is_main_process:
            tokenizer.save_pretrained(args.output_dir)
            if args.push_to_hub:
                repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)

            logger.info(json.dumps(eval_metric, indent=4))
            save_prefixed_metrics(eval_metric, args.output_dir)
示例#25
0
def main():
    args = parse_args()

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_image_classification_no_trainer", args)

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    # If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers
    # in the environment
    accelerator_log_kwargs = {}

    if args.with_tracking:
        accelerator_log_kwargs["log_with"] = args.report_to
        accelerator_log_kwargs["logging_dir"] = args.output_dir

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        **accelerator_log_kwargs)

    logger.info(accelerator.state)
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name,
                                               token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"),
                      "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()

    # Get the datasets: you can either provide your own training and evaluation files (see below)
    # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        dataset = load_dataset(args.dataset_name, task="image-classification")
    else:
        data_files = {}
        if args.train_dir is not None:
            data_files["train"] = os.path.join(args.train_dir, "**")
        if args.validation_dir is not None:
            data_files["validation"] = os.path.join(args.validation_dir, "**")
        dataset = load_dataset(
            "imagefolder",
            data_files=data_files,
            cache_dir=args.cache_dir,
            task="image-classification",
        )
        # See more about loading custom images at
        # https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder.

    # If we don't have a validation split, split off a percentage of train as validation.
    args.train_val_split = None if "validation" in dataset.keys(
    ) else args.train_val_split
    if isinstance(args.train_val_split, float) and args.train_val_split > 0.0:
        split = dataset["train"].train_test_split(args.train_val_split)
        dataset["train"] = split["train"]
        dataset["validation"] = split["test"]

    # Prepare label mappings.
    # We'll include these in the model's config to get human readable labels in the Inference API.
    labels = dataset["train"].features["labels"].names
    label2id = {label: str(i) for i, label in enumerate(labels)}
    id2label = {str(i): label for i, label in enumerate(labels)}

    # Load pretrained model and feature extractor
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        args.model_name_or_path,
        num_labels=len(labels),
        i2label=id2label,
        label2id=label2id,
        finetuning_task="image-classification",
    )
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        args.model_name_or_path)
    model = AutoModelForImageClassification.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        ignore_mismatched_sizes=args.ignore_mismatched_sizes,
    )

    # Preprocessing the datasets

    # Define torchvision transforms to be applied to each image.
    normalize = Normalize(mean=feature_extractor.image_mean,
                          std=feature_extractor.image_std)
    train_transforms = Compose([
        RandomResizedCrop(feature_extractor.size),
        RandomHorizontalFlip(),
        ToTensor(),
        normalize,
    ])
    val_transforms = Compose([
        Resize(feature_extractor.size),
        CenterCrop(feature_extractor.size),
        ToTensor(),
        normalize,
    ])

    def preprocess_train(example_batch):
        """Apply _train_transforms across a batch."""
        example_batch["pixel_values"] = [
            train_transforms(image.convert("RGB"))
            for image in example_batch["image"]
        ]
        return example_batch

    def preprocess_val(example_batch):
        """Apply _val_transforms across a batch."""
        example_batch["pixel_values"] = [
            val_transforms(image.convert("RGB"))
            for image in example_batch["image"]
        ]
        return example_batch

    with accelerator.main_process_first():
        if args.max_train_samples is not None:
            dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(
                range(args.max_train_samples))
        # Set the training transforms
        train_dataset = dataset["train"].with_transform(preprocess_train)
        if args.max_eval_samples is not None:
            dataset["validation"] = dataset["validation"].shuffle(
                seed=args.seed).select(range(args.max_eval_samples))
        # Set the validation transforms
        eval_dataset = dataset["validation"].with_transform(preprocess_val)

    # DataLoaders creation:
    def collate_fn(examples):
        pixel_values = torch.stack(
            [example["pixel_values"] for example in examples])
        labels = torch.tensor([example["labels"] for example in examples])
        return {"pixel_values": pixel_values, "labels": labels}

    train_dataloader = DataLoader(train_dataset,
                                  shuffle=True,
                                  collate_fn=collate_fn,
                                  batch_size=args.per_device_train_batch_size)
    eval_dataloader = DataLoader(eval_dataset,
                                 collate_fn=collate_fn,
                                 batch_size=args.per_device_eval_batch_size)

    # Optimizer
    # Split weights in two groups, one with weight decay and the other not.
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            args.weight_decay,
        },
        {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0,
        },
    ]
    optimizer = torch.optim.AdamW(optimizer_grouped_parameters,
                                  lr=args.learning_rate)

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps *
        args.gradient_accumulation_steps,
        num_training_steps=args.max_train_steps *
        args.gradient_accumulation_steps,
    )

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader, lr_scheduler)

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps /
                                      num_update_steps_per_epoch)

    # Figure out how many steps we should save the Accelerator states
    if hasattr(args.checkpointing_steps, "isdigit"):
        checkpointing_steps = args.checkpointing_steps
        if args.checkpointing_steps.isdigit():
            checkpointing_steps = int(args.checkpointing_steps)
    else:
        checkpointing_steps = None

    # We need to initialize the trackers we use, and also store our configuration.
    # We initialize the trackers only on main process because `accelerator.log`
    # only logs on main process and we don't want empty logs/runs on other processes.
    if args.with_tracking:
        if accelerator.is_main_process:
            experiment_config = vars(args)
            # TensorBoard cannot log Enums, need the raw value
            experiment_config["lr_scheduler_type"] = experiment_config[
                "lr_scheduler_type"].value
            accelerator.init_trackers("image_classification_no_trainer",
                                      experiment_config)

    # Get the metric function
    metric = evaluate.load("accuracy")

    # Train!
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(
        f"  Instantaneous batch size per device = {args.per_device_train_batch_size}"
    )
    logger.info(
        f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
    )
    logger.info(
        f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps),
                        disable=not accelerator.is_local_main_process)
    completed_steps = 0
    starting_epoch = 0
    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
            accelerator.print(
                f"Resumed from checkpoint: {args.resume_from_checkpoint}")
            accelerator.load_state(args.resume_from_checkpoint)
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
            dirs.sort(key=os.path.getctime)
            path = dirs[
                -1]  # Sorts folders by date modified, most recent checkpoint is the last
        # Extract `epoch_{i}` or `step_{i}`
        training_difference = os.path.splitext(path)[0]

        if "epoch" in training_difference:
            starting_epoch = int(training_difference.replace("epoch_", "")) + 1
            resume_step = None
        else:
            resume_step = int(training_difference.replace("step_", ""))
            starting_epoch = resume_step // len(train_dataloader)
            resume_step -= starting_epoch * len(train_dataloader)

    for epoch in range(starting_epoch, args.num_train_epochs):
        model.train()
        if args.with_tracking:
            total_loss = 0
        for step, batch in enumerate(train_dataloader):
            # We need to skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == starting_epoch:
                if resume_step is not None and step < resume_step:
                    completed_steps += 1
                    continue

            with accelerator.accumulate(model):
                outputs = model(**batch)
                loss = outputs.loss
                # We keep track of the loss at each epoch
                if args.with_tracking:
                    total_loss += loss.detach().float()
                accelerator.backward(loss)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                completed_steps += 1

            if isinstance(checkpointing_steps, int):
                if completed_steps % checkpointing_steps == 0:
                    output_dir = f"step_{completed_steps }"
                    if args.output_dir is not None:
                        output_dir = os.path.join(args.output_dir, output_dir)
                    accelerator.save_state(output_dir)

                    if args.push_to_hub and epoch < args.num_train_epochs - 1:
                        accelerator.wait_for_everyone()
                        unwrapped_model = accelerator.unwrap_model(model)
                        unwrapped_model.save_pretrained(
                            args.output_dir,
                            is_main_process=accelerator.is_main_process,
                            save_function=accelerator.save,
                        )
                        if accelerator.is_main_process:
                            feature_extractor.save_pretrained(args.output_dir)
                            repo.push_to_hub(
                                commit_message=
                                f"Training in progress {completed_steps} steps",
                                blocking=False,
                                auto_lfs_prune=True,
                            )

            if completed_steps >= args.max_train_steps:
                break

        model.eval()
        for step, batch in enumerate(eval_dataloader):
            with torch.no_grad():
                outputs = model(**batch)
            predictions = outputs.logits.argmax(dim=-1)
            predictions, references = accelerator.gather_for_metrics(
                (predictions, batch["labels"]))
            metric.add_batch(
                predictions=predictions,
                references=references,
            )

        eval_metric = metric.compute()
        logger.info(f"epoch {epoch}: {eval_metric}")

        if args.with_tracking:
            accelerator.log(
                {
                    "accuracy": eval_metric,
                    "train_loss": total_loss.item() / len(train_dataloader),
                    "epoch": epoch,
                    "step": completed_steps,
                },
                step=completed_steps,
            )

        if args.push_to_hub and epoch < args.num_train_epochs - 1:
            accelerator.wait_for_everyone()
            unwrapped_model = accelerator.unwrap_model(model)
            unwrapped_model.save_pretrained(
                args.output_dir,
                is_main_process=accelerator.is_main_process,
                save_function=accelerator.save)
            if accelerator.is_main_process:
                feature_extractor.save_pretrained(args.output_dir)
                repo.push_to_hub(
                    commit_message=f"Training in progress epoch {epoch}",
                    blocking=False,
                    auto_lfs_prune=True)

        if args.checkpointing_steps == "epoch":
            output_dir = f"epoch_{epoch}"
            if args.output_dir is not None:
                output_dir = os.path.join(args.output_dir, output_dir)
            accelerator.save_state(output_dir)

    if args.output_dir is not None:
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(
            args.output_dir,
            is_main_process=accelerator.is_main_process,
            save_function=accelerator.save)
        if accelerator.is_main_process:
            feature_extractor.save_pretrained(args.output_dir)
            if args.push_to_hub:
                repo.push_to_hub(commit_message="End of training",
                                 auto_lfs_prune=True)

    if args.output_dir is not None:
        with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
            json.dump({"eval_accuracy": eval_metric["accuracy"]}, f)
示例#26
0
class Tez:

    # required stuff
    model: torch.nn.Module

    # training essentials
    config: Optional[TezConfig] = None
    train_dataset = None
    valid_dataset = None
    optimizer = None
    scheduler = None

    # training parameters
    scaler = None
    num_gpu: Optional[int] = 0
    num_train_steps: Optional[int] = None
    num_valid_steps: Optional[int] = None

    # internals
    current_epoch = 0
    train_batch_index = 0
    valid_batch_index = 0
    _train_step = 0
    _valid_step = 0
    _test_step = 0
    _model_state = None
    _train_state = None
    train_loader_bs = None
    valid_loader_bs = None
    _driver = None

    # multi-gpu
    local_rank = -1
    world_size = 1

    # metrics
    train_meter = None
    valid_meter = None

    metrics = {}
    metrics["train"] = {}
    metrics["valid"] = {}
    metrics["test"] = {}
    _progress = None

    def _init_driver(self):
        if self.config.fp16 is True and self.config.bf16 is True:
            raise ValueError("Only one of fp16 and bf16 can be True")

        if self.config.fp16 is True:
            mixed_precision = "fp16"
        elif self.config.bf16 is True:
            mixed_precision = "bf16"
        else:
            mixed_precision = "no"
        self._driver = Accelerator(
            device_placement=True,
            step_scheduler_with_optimizer=False,
            mixed_precision=mixed_precision,
            gradient_accumulation_steps=self.config.
            gradient_accumulation_steps,
        )
        self.config.device = self._driver.device

    def _init_trainer(self, train_dataset, valid_dataset, config, **kwargs):
        self.config = config
        self.train_dataset = train_dataset
        self.valid_dataset = valid_dataset
        self._init_driver()

        # parse args
        self.train_loader = kwargs.get("train_loader", None)
        self.valid_loader = kwargs.get("valid_loader", None)
        self.train_sampler = kwargs.get("train_sampler", None)
        self.valid_sampler = kwargs.get("valid_sampler", None)
        self.train_collate_fn = kwargs.get("train_collate_fn", None)
        self.valid_collate_fn = kwargs.get("valid_collate_fn", None)

        if self.config.num_jobs == -1:
            self.config.num_jobs = multiprocessing.cpu_count()
            if self.config.num_jobs > 4:
                self.config.num_jobs -= 2

        if self.train_loader is None:
            self.train_loader = DataLoader(
                self.train_dataset,
                batch_size=self.config.training_batch_size,
                num_workers=self.config.num_jobs,
                sampler=self.train_sampler,
                shuffle=self.config.train_shuffle,
                collate_fn=self.train_collate_fn,
                drop_last=self.config.train_drop_last,
                pin_memory=self.config.pin_memory,
            )

        if self.valid_loader is None:
            if self.valid_dataset is not None:
                self.valid_loader = DataLoader(
                    self.valid_dataset,
                    batch_size=self.config.validation_batch_size,
                    num_workers=self.config.num_jobs,
                    sampler=self.valid_sampler,
                    shuffle=self.config.valid_shuffle,
                    collate_fn=self.valid_collate_fn,
                    drop_last=self.config.valid_drop_last,
                    pin_memory=self.config.pin_memory,
                )

        self.optimizer, self.scheduler = self.model.optimizer_scheduler()

        if self.optimizer is None:
            raise Exception("No optimizer found")

        if self.valid_loader is not None and self.scheduler is not None:
            self.model, self.optimizer, self.train_loader, self.valid_loader, self.scheduler = self._driver.prepare(
                self.model, self.optimizer, self.train_loader,
                self.valid_loader, self.scheduler)
        elif self.valid_loader is not None and self.scheduler is None:
            self.model, self.optimizer, self.train_loader, self.valid_loader = self._driver.prepare(
                self.model, self.optimizer, self.train_loader,
                self.valid_loader)
        elif self.valid_loader is None and self.scheduler is not None:
            self.model, self.optimizer, self.train_loader, self.scheduler = self._driver.prepare(
                self.model, self.optimizer, self.train_loader, self.scheduler)
        else:
            self.model, self.optimizer, self.train_loader = self._driver.prepare(
                self.model, self.optimizer, self.train_loader)

        self.num_train_steps = int(len(self.train_loader) * self.config.epochs)
        if self.valid_dataset:
            self.num_valid_steps = len(self.valid_loader)
        else:
            self.num_valid_steps = None

        self._progress = Progress(num_train_steps=self.num_train_steps,
                                  num_valid_steps=self.num_valid_steps)

        if "callbacks" in kwargs:
            self.callbacks = [self._progress] + kwargs["callbacks"]
        else:
            self.callbacks = [self._progress]

        self._callback_runner = CallbackRunner(self.callbacks, self)
        self.train_state = enums.TrainingState.TRAIN_START

    @property
    def model_state(self):
        return self._model_state

    @model_state.setter
    def model_state(self, value):
        self._model_state = value

    @property
    def train_state(self):
        return self._train_state

    @train_state.setter
    def train_state(self, value):
        self._train_state = value
        if self._callback_runner is not None:
            if self._driver.is_local_main_process:
                self._callback_runner(value)

    def name_to_metric(self, metric_name):
        if metric_name == "current_epoch":
            return self.current_epoch
        v_1 = metric_name.split("_")[0]
        v_2 = "_".join(metric_name.split("_")[1:])
        return self.metrics[v_1][v_2]

    def update_metrics(self, losses, monitor):
        if self._model_state == enums.ModelState.END:
            return
        self.metrics[self._model_state.value].update(monitor)
        self.metrics[self._model_state.value]["loss"] = losses.avg

    def save(self, model_path, weights_only=False):
        model_state_dict = self._driver.unwrap_model(self.model).state_dict()

        if weights_only:
            if self._driver.is_main_process:
                self._driver.save(
                    model_state_dict,
                    model_path,
                )
            return

        if self.optimizer is not None:
            opt_state_dict = self.optimizer.state_dict()
        else:
            opt_state_dict = None

        if self.scheduler is not None:
            sch_state_dict = self.scheduler.state_dict()
        else:
            sch_state_dict = None

        model_dict = {}
        model_dict["state_dict"] = model_state_dict
        model_dict["optimizer"] = opt_state_dict
        model_dict["scheduler"] = sch_state_dict
        model_dict["config"] = self.config

        if self._driver.is_main_process:
            self._driver.save(
                model_dict,
                model_path,
            )

    def load(self, model_path, weights_only=False, config: TezConfig = None):
        if config is None:
            self.config = TezConfig()
        else:
            self.config = config

        if self._driver is None:
            self._init_driver()

        self._driver.wait_for_everyone()

        model_dict = torch.load(model_path, map_location="cpu")
        if weights_only:
            self._driver.unwrap_model(self.model).load_state_dict(model_dict)
        else:
            self._driver.unwrap_model(self.model).load_state_dict(
                model_dict["state_dict"])
            self.optimizer.load_state_dict(model_dict["optimizer"])

    def model_fn(self, data):
        output, loss, metrics = self.model(**data)
        metrics = self._driver.gather(metrics)
        metrics = {key: value.mean() for key, value in metrics.items()}
        return output, loss, metrics

    def _zero_grad(self):
        self.optimizer.zero_grad()

    def _backward(self, loss):
        self._driver.backward(loss)

    def _clip_grad_norm(self):
        if self.config.clip_grad_norm != -1:
            torch.nn.utils.clip_grad_norm_(self.model.parameters(),
                                           self.config.clip_grad_norm)

    def _step(self):
        self.optimizer.step()

        if self.scheduler is not None:
            if self.config.step_scheduler_after == "batch":
                if self.config.step_scheduler_metric is None:
                    self.scheduler.step()
                else:
                    step_metric = self.name_to_metric(
                        self.config.step_scheduler_metric)
                    self.scheduler.step(step_metric)

    def train_step(self, data):
        # self._zero_grad()
        with self._driver.accumulate(self.model):
            _, loss, metrics = self.model_fn(data)
            self._backward(loss)
            self._clip_grad_norm()
            self._step()
            self._zero_grad()
        return loss, metrics

    def predict_step(self, data):
        _, loss, metrics = self.model_fn(data)
        metrics = self._driver.gather(metrics)
        metrics = {key: value.mean() for key, value in metrics.items()}
        return loss, metrics

    def _set_training_epoch_start(self, data_loader):
        self.model_state = enums.ModelState.TRAIN
        self.train_state = enums.TrainingState.TRAIN_EPOCH_START
        try:
            self.train_loader_bs = data_loader.batch_sampler.batch_size
        except AttributeError:
            self.train_loader_bs = data_loader._loader.batch_sampler.batch_size
        self.model.train()

    def _set_training_epoch_end(self, losses, monitor):
        self.update_metrics(losses=losses, monitor=monitor)
        self.train_state = enums.TrainingState.TRAIN_EPOCH_END

    def _update_monitor(self, losses, metrics):
        monitor = {}

        if self._model_state == enums.ModelState.TRAIN:
            metrics_meter = self.train_meter
            _bs = self.train_loader_bs
        elif self._model_state == enums.ModelState.VALID:
            metrics_meter = self.valid_meter
            _bs = self.valid_loader_bs
        else:
            raise ValueError("Invalid model state")

        for m_m in metrics_meter:
            metrics_meter[m_m].update(metrics[m_m].cpu().detach().numpy(), _bs)
            monitor[m_m] = metrics_meter[m_m].avg

        if self._model_state == enums.ModelState.TRAIN:
            self.train_meter = metrics_meter
        elif self._model_state == enums.ModelState.VALID:
            self.valid_meter = metrics_meter
        else:
            raise ValueError("Invalid model state")
        self.update_metrics(losses=losses, monitor=monitor)
        return monitor

    def _update_loss_metrics(self, losses, loss, metrics):
        if self._model_state == enums.ModelState.TRAIN:
            if self.train_batch_index == 0:
                self.train_meter = {k: AverageMeter() for k in metrics}
            losses.update(
                loss.item() * self.config.gradient_accumulation_steps,
                self.train_loader_bs)
        elif self._model_state == enums.ModelState.VALID:
            if self.valid_batch_index == 0:
                self.valid_meter = {k: AverageMeter() for k in metrics}
            loss = self._driver.gather(loss).mean()
            losses.update(loss.item(), self.valid_loader_bs)
        else:
            raise ValueError("Invalid model state")

        monitor = self._update_monitor(losses, metrics)

        if self._model_state == enums.ModelState.TRAIN:
            self._train_step += 1
        elif self._model_state == enums.ModelState.VALID:
            self._valid_step += 1
        else:
            raise ValueError("Invalid model state")
        return losses, monitor

    def train(self, data_loader):
        self._set_training_epoch_start(data_loader)
        losses = AverageMeter()
        for batch_index, data in enumerate(data_loader):
            self.train_batch_index = batch_index
            self.train_state = enums.TrainingState.TRAIN_STEP_START
            loss, metrics = self.train_step(data)
            losses, monitor = self._update_loss_metrics(losses, loss, metrics)
            self.train_state = enums.TrainingState.TRAIN_STEP_END

            if self.valid_loader and self.config.val_strategy == "batch":
                if self._train_step % self.config.val_steps == 0 or self._train_step == self.num_train_steps:
                    self.validate(self.valid_loader)

            if self._model_state == enums.ModelState.END:
                break

        self._set_training_epoch_end(losses, monitor)

    def _set_validation_epoch_start(self, data_loader):
        self.train_state = enums.TrainingState.VALID_EPOCH_START
        self.model_state = enums.ModelState.VALID
        try:
            self.valid_loader_bs = data_loader.batch_sampler.batch_size
        except AttributeError:
            self.valid_loader_bs = data_loader._loader.batch_sampler.batch_size
        self.model.eval()

    def _set_validation_epoch_end(self, losses, monitor):
        self.update_metrics(losses=losses, monitor=monitor)
        self.train_state = enums.TrainingState.VALID_EPOCH_END
        if self.config.val_strategy == "batch" and self._model_state != enums.ModelState.END:
            self.model_state = enums.ModelState.TRAIN
            self.train_state = enums.TrainingState.TRAIN_EPOCH_START
            self.model.train()

    def validate(self, data_loader):
        self._set_validation_epoch_start(data_loader)
        losses = AverageMeter()

        for batch_index, data in enumerate(data_loader):
            self.valid_batch_index = batch_index
            self.train_state = enums.TrainingState.VALID_STEP_START
            with torch.no_grad():
                loss, metrics = self.predict_step(data)
            losses, monitor = self._update_loss_metrics(losses, loss, metrics)
            self.train_state = enums.TrainingState.VALID_STEP_END
        self._set_validation_epoch_end(losses, monitor)

    def _step_scheduler_after_epoch(self):
        if self.scheduler is not None:
            if self.config.step_scheduler_after == "epoch":
                if self.config.step_scheduler_metric is None:
                    self.scheduler.step()
                else:
                    step_metric = self.name_to_metric(
                        self.config.step_scheduler_metric)
                    self.scheduler.step(step_metric)

    def fit(self,
            train_dataset,
            valid_dataset=None,
            config: TezConfig = None,
            **kwargs):
        if config is None:
            config = TezConfig()
        self._init_trainer(train_dataset, valid_dataset, config, **kwargs)
        for _ in range(self.config.epochs):
            self.train_state = enums.TrainingState.EPOCH_START
            self.train(self.train_loader)
            if self.valid_loader and self.config.val_strategy == "epoch":
                self.validate(self.valid_loader)
            self._step_scheduler_after_epoch()
            self.train_state = enums.TrainingState.EPOCH_END
            if self._model_state == enums.ModelState.END:
                time.sleep(2)
                break
            self.current_epoch += 1
        self.train_state = enums.TrainingState.TRAIN_END

    def process_output(self, output):
        output = output.cpu().detach().numpy()
        return output

    def predict(self, dataset, **kwargs):

        self.model_state = enums.ModelState.TEST
        self._init_driver()

        if "sampler" in kwargs:
            sampler = kwargs["sampler"]
        else:
            sampler = None

        if "collate_fn" in kwargs:
            collate_fn = kwargs["collate_fn"]
        else:
            collate_fn = None

        if "batch_size" in kwargs:
            batch_size = kwargs["batch_size"]
        else:
            batch_size = self.config.test_batch_size

        if "num_jobs" in kwargs:
            num_jobs = kwargs["num_jobs"]
        else:
            num_jobs = self.config.num_jobs

        if "pin_memory" in kwargs:
            pin_memory = kwargs["pin_memory"]
        else:
            pin_memory = self.config.pin_memory

        if num_jobs == -1:
            num_jobs = multiprocessing.cpu_count()
            if num_jobs > 4:
                num_jobs -= 2

        if batch_size == 1:
            num_jobs = 0

        data_loader = DataLoader(
            dataset,
            batch_size=batch_size,
            num_workers=num_jobs,
            sampler=sampler,
            collate_fn=collate_fn,
            pin_memory=pin_memory,
            drop_last=False,
        )

        self.model, data_loader = self._driver.prepare(self.model, data_loader)

        self.model.eval()

        for data in data_loader:
            with torch.no_grad():
                out, _, _ = self.model_fn(data)
                out = self._driver.gather(out)
                out = self.process_output(out)
                yield out
示例#27
0
def main():
    args = parse_args()

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    accelerator = Accelerator()
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state)

    # Setup logging, we only want one process per machine to log things on the screen.
    # accelerator.is_local_main_process is only True for one process per machine.
    logger.setLevel(
        logging.INFO if accelerator.is_local_main_process else logging.ERROR)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).

    # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
    # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
    # label if at least two columns are provided.

    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)

    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if args.task_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset("glue", args.task_name)
    else:
        # Loading the dataset from local csv or json file.
        data_files = {}
        if args.train_file is not None:
            data_files["train"] = args.train_file
        if args.validation_file is not None:
            data_files["validation"] = args.validation_file
        extension = (args.train_file if args.train_file is not None else
                     args.valid_file).split(".")[-1]
        raw_datasets = load_dataset(extension, data_files=data_files)
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Labels
    if args.task_name is not None:
        is_regression = args.task_name == "stsb"
        if not is_regression:
            label_list = raw_datasets["train"].features["label"].names
            num_labels = len(label_list)
        else:
            num_labels = 1
    else:
        # Trying to have good defaults here, don't hesitate to tweak to your needs.
        is_regression = raw_datasets["train"].features["label"].dtype in [
            "float32", "float64"
        ]
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
            label_list = raw_datasets["train"].unique("label")
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)

    # Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(args.model_name_or_path,
                                        num_labels=num_labels,
                                        finetuning_task=args.task_name)
    tokenizer = AutoTokenizer.from_pretrained(
        args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
    model = AutoModelForSequenceClassification.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
    )

    # Preprocessing the datasets
    if args.task_name is not None:
        sentence1_key, sentence2_key = task_to_keys[args.task_name]
    else:
        # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
        non_label_column_names = [
            name for name in raw_datasets["train"].column_names
            if name != "label"
        ]
        if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
            sentence1_key, sentence2_key = "sentence1", "sentence2"
        else:
            if len(non_label_column_names) >= 2:
                sentence1_key, sentence2_key = non_label_column_names[:2]
            else:
                sentence1_key, sentence2_key = non_label_column_names[0], None

    # Some models have set the order of the labels to use, so let's make sure we do use it.
    label_to_id = None
    if (model.config.label2id !=
            PretrainedConfig(num_labels=num_labels).label2id
            and args.task_name is not None and not is_regression):
        # Some have all caps in their config, some don't.
        label_name_to_id = {
            k.lower(): v
            for k, v in model.config.label2id.items()
        }
        if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
            logger.info(
                f"The configuration of the model provided the following label correspondence: {label_name_to_id}. "
                "Using it!")
            label_to_id = {
                i: label_name_to_id[label_list[i]]
                for i in range(num_labels)
            }
        else:
            logger.warn(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
                f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
                "\nIgnoring the model labels as a result.",
            )
    elif args.task_name is None:
        label_to_id = {v: i for i, v in enumerate(label_list)}

    padding = "max_length" if args.pad_to_max_length else False

    def preprocess_function(examples):
        # Tokenize the texts
        texts = ((examples[sentence1_key], ) if sentence2_key is None else
                 (examples[sentence1_key], examples[sentence2_key]))
        result = tokenizer(*texts,
                           padding=padding,
                           max_length=args.max_length,
                           truncation=True)

        if "label" in examples:
            if label_to_id is not None:
                # Map labels to IDs (not necessary for GLUE tasks)
                result["labels"] = [label_to_id[l] for l in examples["label"]]
            else:
                # In all cases, rename the column to labels because the model will expect that.
                result["labels"] = examples["label"]
        return result

    processed_datasets = raw_datasets.map(
        preprocess_function,
        batched=True,
        remove_columns=raw_datasets["train"].column_names)

    train_dataset = processed_datasets["train"]
    eval_dataset = processed_datasets["validation_matched" if args.task_name ==
                                      "mnli" else "validation"]

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(
            f"Sample {index} of the training set: {train_dataset[index]}.")

    # DataLoaders creation:
    if args.pad_to_max_length:
        # If padding was already done ot max length, we use the default data collator that will just convert everything
        # to tensors.
        data_collator = default_data_collator
    else:
        # Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of
        # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
        # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
        data_collator = DataCollatorWithPadding(
            tokenizer,
            pad_to_multiple_of=(8 if accelerator.use_fp16 else None))

    train_dataloader = DataLoader(train_dataset,
                                  shuffle=True,
                                  collate_fn=data_collator,
                                  batch_size=args.per_device_train_batch_size)
    eval_dataloader = DataLoader(eval_dataset,
                                 collate_fn=data_collator,
                                 batch_size=args.per_device_eval_batch_size)

    # Optimizer
    # Split weights in two groups, one with weight decay and the other not.
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            args.weight_decay,
        },
        {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0,
        },
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader)

    # Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
    # shorter in multiprocess)

    # Scheduler and math around the number of training steps.
    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    else:
        args.num_train_epochs = math.ceil(args.max_train_steps /
                                          num_update_steps_per_epoch)

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # Get the metric function
    if args.task_name is not None:
        metric = load_metric("glue", args.task_name)

    # Train!
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(
        f"  Instantaneous batch size per device = {args.per_device_train_batch_size}"
    )
    logger.info(
        f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
    )
    logger.info(
        f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps),
                        disable=not accelerator.is_local_main_process)
    completed_steps = 0

    for epoch in range(args.num_train_epochs):
        model.train()
        for step, batch in enumerate(train_dataloader):
            outputs = model(**batch)
            loss = outputs.loss
            loss = loss / args.gradient_accumulation_steps
            accelerator.backward(loss)
            if step % args.gradient_accumulation_steps == 0 or step == len(
                    train_dataloader) - 1:
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                completed_steps += 1

            if completed_steps >= args.max_train_steps:
                break

        model.eval()
        for step, batch in enumerate(eval_dataloader):
            outputs = model(**batch)
            predictions = outputs.logits.argmax(dim=-1)
            metric.add_batch(
                predictions=accelerator.gather(predictions),
                references=accelerator.gather(batch["labels"]),
            )

        eval_metric = metric.compute()
        logger.info(f"epoch {epoch}: {eval_metric}")

    if args.output_dir is not None:
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(args.output_dir,
                                        save_function=accelerator.save)

    if args.task_name == "mnli":
        # Final evaluation on mismatched validation set
        eval_dataset = processed_datasets["validation_mismatched"]
        eval_dataloader = DataLoader(
            eval_dataset,
            collate_fn=data_collator,
            batch_size=args.per_device_eval_batch_size)
        eval_dataloader = accelerator.prepare(eval_dataloader)

        model.eval()
        for step, batch in enumerate(eval_dataloader):
            outputs = model(**batch)
            predictions = outputs.logits.argmax(dim=-1)
            metric.add_batch(
                predictions=accelerator.gather(predictions),
                references=accelerator.gather(batch["labels"]),
            )

        eval_metric = metric.compute()
        logger.info(f"mnli-mm: {eval_metric}")
def main():
    args = parse_args()

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    accelerator = Accelerator()
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state)

    # Setup logging, we only want one process per machine to log things on the screen.
    # accelerator.is_local_main_process is only True for one process per machine.
    logger.setLevel(
        logging.INFO if accelerator.is_local_main_process else logging.ERROR)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets for token classification task available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'tokens' or the first column if no column called
    # 'tokens' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(args.dataset_name,
                                    args.dataset_config_name)
    else:
        data_files = {}
        if args.train_file is not None:
            data_files["train"] = args.train_file
        if args.validation_file is not None:
            data_files["validation"] = args.validation_file
        extension = args.train_file.split(".")[-1]
        raw_datasets = load_dataset(extension, data_files=data_files)
    # Trim a number of training examples
    if args.debug:
        for split in raw_datasets.keys():
            raw_datasets[split] = raw_datasets[split].select(range(100))
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if raw_datasets["train"] is not None:
        column_names = raw_datasets["train"].column_names
        features = raw_datasets["train"].features
    else:
        column_names = raw_datasets["validation"].column_names
        features = raw_datasets["validation"].features

    if args.text_column_name is not None:
        text_column_name = args.text_column_name
    elif "tokens" in column_names:
        text_column_name = "tokens"
    else:
        text_column_name = column_names[0]

    if args.label_column_name is not None:
        label_column_name = args.label_column_name
    elif f"{args.task_name}_tags" in column_names:
        label_column_name = f"{args.task_name}_tags"
    else:
        label_column_name = column_names[1]

    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

    if isinstance(features[label_column_name].feature, ClassLabel):
        label_list = features[label_column_name].feature.names
        # No need to convert the labels since they are already ints.
        label_to_id = {i: i for i in range(len(label_list))}
    else:
        label_list = get_label_list(raw_datasets["train"][label_column_name])
        label_to_id = {l: i for i, l in enumerate(label_list)}
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if args.config_name:
        config = AutoConfig.from_pretrained(args.config_name,
                                            num_labels=num_labels)
    elif args.model_name_or_path:
        config = AutoConfig.from_pretrained(args.model_name_or_path,
                                            num_labels=num_labels)
    else:
        config = CONFIG_MAPPING[args.model_type]()
        logger.warning(
            "You are instantiating a new config instance from scratch.")

    tokenizer_name_or_path = args.tokenizer_name if args.tokenizer_name else args.model_name_or_path
    if not tokenizer_name_or_path:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if config.model_type in {"gpt2", "roberta"}:
        tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path,
                                                  use_fast=True,
                                                  add_prefix_space=True)
    else:
        tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path,
                                                  use_fast=True)

    if args.model_name_or_path:
        model = AutoModelForTokenClassification.from_pretrained(
            args.model_name_or_path,
            from_tf=bool(".ckpt" in args.model_name_or_path),
            config=config,
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForTokenClassification.from_config(config)

    model.resize_token_embeddings(len(tokenizer))

    # Preprocessing the raw_datasets.
    # First we tokenize all the texts.
    padding = "max_length" if args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.

    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            max_length=args.max_length,
            padding=padding,
            truncation=True,
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
        )

        labels = []
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
            label_ids = []
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
                    label_ids.append(-100)
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
                    label_ids.append(label_to_id[label[word_idx]] if args.
                                     label_all_tokens else -100)
                previous_word_idx = word_idx

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

    processed_raw_datasets = raw_datasets.map(
        tokenize_and_align_labels,
        batched=True,
        remove_columns=raw_datasets["train"].column_names)

    train_dataset = processed_raw_datasets["train"]
    eval_dataset = processed_raw_datasets["validation"]

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(
            f"Sample {index} of the training set: {train_dataset[index]}.")

    # DataLoaders creation:
    if args.pad_to_max_length:
        # If padding was already done ot max length, we use the default data collator that will just convert everything
        # to tensors.
        data_collator = default_data_collator
    else:
        # Otherwise, `DataCollatorForTokenClassification` will apply dynamic padding for us (by padding to the maximum length of
        # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
        # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
        data_collator = DataCollatorForTokenClassification(
            tokenizer,
            pad_to_multiple_of=(8 if accelerator.use_fp16 else None))

    train_dataloader = DataLoader(train_dataset,
                                  shuffle=True,
                                  collate_fn=data_collator,
                                  batch_size=args.per_device_train_batch_size)
    eval_dataloader = DataLoader(eval_dataset,
                                 collate_fn=data_collator,
                                 batch_size=args.per_device_eval_batch_size)

    # Optimizer
    # Split weights in two groups, one with weight decay and the other not.
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            args.weight_decay,
        },
        {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0,
        },
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)

    # Use the device given by the `accelerator` object.
    device = accelerator.device
    model.to(device)

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader)

    # Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
    # shorter in multiprocess)

    # Scheduler and math around the number of training steps.
    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    else:
        args.num_train_epochs = math.ceil(args.max_train_steps /
                                          num_update_steps_per_epoch)

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # Metrics
    metric = load_metric("seqeval")

    def get_labels(predictions, references):
        # Transform predictions and references tensos to numpy arrays
        if device.type == "cpu":
            y_pred = predictions.detach().clone().numpy()
            y_true = references.detach().clone().numpy()
        else:
            y_pred = predictions.detach().cpu().clone().numpy()
            y_true = references.detach().cpu().clone().numpy()

        # Remove ignored index (special tokens)
        true_predictions = [[
            label_list[p] for (p, l) in zip(pred, gold_label) if l != -100
        ] for pred, gold_label in zip(y_pred, y_true)]
        true_labels = [[
            label_list[l] for (p, l) in zip(pred, gold_label) if l != -100
        ] for pred, gold_label in zip(y_pred, y_true)]
        return true_predictions, true_labels

    def compute_metrics():
        results = metric.compute()
        if args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }

    # Train!
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(
        f"  Instantaneous batch size per device = {args.per_device_train_batch_size}"
    )
    logger.info(
        f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
    )
    logger.info(
        f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps),
                        disable=not accelerator.is_local_main_process)
    completed_steps = 0

    for epoch in range(args.num_train_epochs):
        model.train()
        for step, batch in enumerate(train_dataloader):
            outputs = model(**batch)
            loss = outputs.loss
            loss = loss / args.gradient_accumulation_steps
            accelerator.backward(loss)
            if step % args.gradient_accumulation_steps == 0 or step == len(
                    train_dataloader) - 1:
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                completed_steps += 1

            if completed_steps >= args.max_train_steps:
                break

        model.eval()
        for step, batch in enumerate(eval_dataloader):
            with torch.no_grad():
                outputs = model(**batch)
            predictions = outputs.logits.argmax(dim=-1)
            labels = batch["labels"]
            if not args.pad_to_max_length:  # necessary to pad predictions and labels for being gathered
                predictions = accelerator.pad_across_processes(predictions,
                                                               dim=1,
                                                               pad_index=-100)
                labels = accelerator.pad_across_processes(labels,
                                                          dim=1,
                                                          pad_index=-100)

            predictions_gathered = accelerator.gather(predictions)
            labels_gathered = accelerator.gather(labels)
            preds, refs = get_labels(predictions_gathered, labels_gathered)
            metric.add_batch(
                predictions=preds,
                references=refs,
            )  # predictions and preferences are expected to be a nested list of labels, not label_ids

        # eval_metric = metric.compute()
        eval_metric = compute_metrics()
        accelerator.print(f"epoch {epoch}:", eval_metric)

    if args.output_dir is not None:
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(args.output_dir,
                                        save_function=accelerator.save)
def main():
    args = parse_args()

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    accelerator = Accelerator()
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state)

    # Setup logging, we only want one process per machine to log things on the screen.
    # accelerator.is_local_main_process is only True for one process per machine.
    logger.setLevel(
        logging.INFO if accelerator.is_local_main_process else logging.ERROR)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(args.dataset_name,
                                    args.dataset_config_name)
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                args.dataset_name,
                args.dataset_config_name,
                split=f"train[:{args.validation_split_percentage}%]",
            )
            raw_datasets["train"] = load_dataset(
                args.dataset_name,
                args.dataset_config_name,
                split=f"train[{args.validation_split_percentage}%:]",
            )
    else:
        data_files = {}
        if args.train_file is not None:
            data_files["train"] = args.train_file
        if args.validation_file is not None:
            data_files["validation"] = args.validation_file
        extension = args.train_file.split(".")[-1]
        if extension == "txt":
            extension = "text"
        raw_datasets = load_dataset(extension, data_files=data_files)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if args.config_name:
        config = AutoConfig.from_pretrained(args.config_name)
    elif args.model_name_or_path:
        config = AutoConfig.from_pretrained(args.model_name_or_path)
    else:
        config = CONFIG_MAPPING[args.model_type]()
        logger.warning(
            "You are instantiating a new config instance from scratch.")

    if args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(
            args.tokenizer_name, use_fast=not args.use_slow_tokenizer)
    elif args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if args.model_name_or_path:
        model = AutoModelForMaskedLM.from_pretrained(
            args.model_name_or_path,
            from_tf=bool(".ckpt" in args.model_name_or_path),
            config=config,
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForMaskedLM.from_config(config)

    model.resize_token_embeddings(len(tokenizer))

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    column_names = raw_datasets["train"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

    if args.max_seq_length is None:
        max_seq_length = tokenizer.model_max_length
        if max_seq_length > 1024:
            logger.warning(
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
            )
            max_seq_length = 1024
    else:
        if args.max_seq_length > tokenizer.model_max_length:
            logger.warning(
                f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"
                f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
            )
        max_seq_length = min(args.max_seq_length, tokenizer.model_max_length)

    if args.line_by_line:
        # When using line_by_line, we just tokenize each nonempty line.
        padding = "max_length" if args.pad_to_max_length else False

        def tokenize_function(examples):
            # Remove empty lines
            examples["text"] = [
                line for line in examples["text"]
                if len(line) > 0 and not line.isspace()
            ]
            return tokenizer(
                examples["text"],
                padding=padding,
                truncation=True,
                max_length=max_seq_length,
                # We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it
                # receives the `special_tokens_mask`.
                return_special_tokens_mask=True,
            )

        tokenized_datasets = raw_datasets.map(
            tokenize_function,
            batched=True,
            num_proc=args.preprocessing_num_workers,
            remove_columns=[text_column_name],
            load_from_cache_file=not args.overwrite_cache,
        )
    else:
        # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
        # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
        # efficient when it receives the `special_tokens_mask`.
        def tokenize_function(examples):
            return tokenizer(examples[text_column_name],
                             return_special_tokens_mask=True)

        tokenized_datasets = raw_datasets.map(
            tokenize_function,
            batched=True,
            num_proc=args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not args.overwrite_cache,
        )

        # Main data processing function that will concatenate all texts from our dataset and generate chunks of
        # max_seq_length.
        def group_texts(examples):
            # Concatenate all texts.
            concatenated_examples = {
                k: sum(examples[k], [])
                for k in examples.keys()
            }
            total_length = len(concatenated_examples[list(examples.keys())[0]])
            # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
            # customize this part to your needs.
            total_length = (total_length // max_seq_length) * max_seq_length
            # Split by chunks of max_len.
            result = {
                k: [
                    t[i:i + max_seq_length]
                    for i in range(0, total_length, max_seq_length)
                ]
                for k, t in concatenated_examples.items()
            }
            return result

        # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
        # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
        # might be slower to preprocess.
        #
        # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
        # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map

        tokenized_datasets = tokenized_datasets.map(
            group_texts,
            batched=True,
            num_proc=args.preprocessing_num_workers,
            load_from_cache_file=not args.overwrite_cache,
        )

    train_dataset = tokenized_datasets["train"]
    eval_dataset = tokenized_datasets["validation"]

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(
            f"Sample {index} of the training set: {train_dataset[index]}.")

    # Data collator
    # This one will take care of randomly masking the tokens.
    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer, mlm_probability=args.mlm_probability)

    # DataLoaders creation:
    train_dataloader = DataLoader(train_dataset,
                                  shuffle=True,
                                  collate_fn=data_collator,
                                  batch_size=args.per_device_train_batch_size)
    eval_dataloader = DataLoader(eval_dataset,
                                 collate_fn=data_collator,
                                 batch_size=args.per_device_eval_batch_size)

    # Optimizer
    # Split weights in two groups, one with weight decay and the other not.
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            args.weight_decay,
        },
        {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0,
        },
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader)

    # Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
    # shorter in multiprocess)

    # Scheduler and math around the number of training steps.
    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    else:
        args.num_train_epochs = math.ceil(args.max_train_steps /
                                          num_update_steps_per_epoch)

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # Train!
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(
        f"  Instantaneous batch size per device = {args.per_device_train_batch_size}"
    )
    logger.info(
        f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
    )
    logger.info(
        f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps),
                        disable=not accelerator.is_local_main_process)
    completed_steps = 0

    for epoch in range(args.num_train_epochs):
        model.train()
        for step, batch in enumerate(train_dataloader):
            outputs = model(**batch)
            loss = outputs.loss
            loss = loss / args.gradient_accumulation_steps
            accelerator.backward(loss)
            if step % args.gradient_accumulation_steps == 0 or step == len(
                    train_dataloader) - 1:
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                completed_steps += 1

            if completed_steps >= args.max_train_steps:
                break

        model.eval()
        losses = []
        for step, batch in enumerate(eval_dataloader):
            with torch.no_grad():
                outputs = model(**batch)

            loss = outputs.loss
            losses.append(
                accelerator.gather(loss.repeat(
                    args.per_device_eval_batch_size)))

        losses = torch.cat(losses)
        losses = losses[:len(eval_dataset)]
        perplexity = math.exp(torch.mean(losses))

        logger.info(f"epoch {epoch}: perplexity: {perplexity}")

    if args.output_dir is not None:
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(args.output_dir,
                                        save_function=accelerator.save)
def main():
    args = parse_args()

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    # If we're using tracking, we also need to initialize it here and it will pick up all supported trackers in the environment
    accelerator = Accelerator(
        log_with="all",
        logging_dir=args.output_dir) if args.with_tracking else Accelerator()
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    # We set device_specific to True as we want different data augmentation per device.
    if args.seed is not None:
        set_seed(args.seed, device_specific=True)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name,
                                               token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"),
                      "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
    accelerator.wait_for_everyone()

    # Load dataset
    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    # TODO support datasets from local folders
    dataset = load_dataset(args.dataset_name, cache_dir=args.cache_dir)

    # Rename column names to standardized names (only "image" and "label" need to be present)
    if "pixel_values" in dataset["train"].column_names:
        dataset = dataset.rename_columns({"pixel_values": "image"})
    if "annotation" in dataset["train"].column_names:
        dataset = dataset.rename_columns({"annotation": "label"})

    # If we don't have a validation split, split off a percentage of train as validation.
    args.train_val_split = None if "validation" in dataset.keys(
    ) else args.train_val_split
    if isinstance(args.train_val_split, float) and args.train_val_split > 0.0:
        split = dataset["train"].train_test_split(args.train_val_split)
        dataset["train"] = split["train"]
        dataset["validation"] = split["test"]

    # Prepare label mappings.
    # We'll include these in the model's config to get human readable labels in the Inference API.
    if args.dataset_name == "scene_parse_150":
        repo_id = "datasets/huggingface/label-files"
        filename = "ade20k-id2label.json"
    else:
        repo_id = f"datasets/{args.dataset_name}"
        filename = "id2label.json"
    id2label = json.load(open(hf_hub_download(repo_id, filename), "r"))
    id2label = {int(k): v for k, v in id2label.items()}
    label2id = {v: k for k, v in id2label.items()}

    # Load pretrained model and feature extractor
    config = AutoConfig.from_pretrained(args.model_name_or_path,
                                        id2label=id2label,
                                        label2id=label2id)
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        args.model_name_or_path)
    model = AutoModelForSemanticSegmentation.from_pretrained(
        args.model_name_or_path, config=config)

    # Preprocessing the datasets
    # Define torchvision transforms to be applied to each image + target.
    # Not that straightforward in torchvision: https://github.com/pytorch/vision/issues/9
    # Currently based on official torchvision references: https://github.com/pytorch/vision/blob/main/references/segmentation/transforms.py
    train_transforms = Compose([
        ReduceLabels() if args.reduce_labels else Identity(),
        RandomCrop(size=feature_extractor.size),
        RandomHorizontalFlip(flip_prob=0.5),
        PILToTensor(),
        ConvertImageDtype(torch.float),
        Normalize(mean=feature_extractor.image_mean,
                  std=feature_extractor.image_std),
    ])
    # Define torchvision transform to be applied to each image.
    # jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1)
    val_transforms = Compose([
        ReduceLabels() if args.reduce_labels else Identity(),
        Resize(size=(feature_extractor.size, feature_extractor.size)),
        PILToTensor(),
        ConvertImageDtype(torch.float),
        Normalize(mean=feature_extractor.image_mean,
                  std=feature_extractor.image_std),
    ])

    def preprocess_train(example_batch):
        pixel_values = []
        labels = []
        for image, target in zip(example_batch["image"],
                                 example_batch["label"]):
            image, target = train_transforms(image.convert("RGB"), target)
            pixel_values.append(image)
            labels.append(target)

        encoding = dict()
        encoding["pixel_values"] = torch.stack(pixel_values)
        encoding["labels"] = torch.stack(labels)

        return encoding

    def preprocess_val(example_batch):
        pixel_values = []
        labels = []
        for image, target in zip(example_batch["image"],
                                 example_batch["label"]):
            image, target = val_transforms(image.convert("RGB"), target)
            pixel_values.append(image)
            labels.append(target)

        encoding = dict()
        encoding["pixel_values"] = torch.stack(pixel_values)
        encoding["labels"] = torch.stack(labels)

        return encoding

    with accelerator.main_process_first():
        train_dataset = dataset["train"].with_transform(preprocess_train)
        eval_dataset = dataset["validation"].with_transform(preprocess_val)

    train_dataloader = DataLoader(train_dataset,
                                  shuffle=True,
                                  collate_fn=default_data_collator,
                                  batch_size=args.per_device_train_batch_size)
    eval_dataloader = DataLoader(eval_dataset,
                                 collate_fn=default_data_collator,
                                 batch_size=args.per_device_eval_batch_size)

    # Optimizer
    optimizer = torch.optim.AdamW(
        list(model.parameters()),
        lr=args.learning_rate,
        betas=[args.adam_beta1, args.adam_beta2],
        eps=args.adam_epsilon,
    )

    # Figure out how many steps we should save the Accelerator states
    if hasattr(args.checkpointing_steps, "isdigit"):
        checkpointing_steps = args.checkpointing_steps
        if args.checkpointing_steps.isdigit():
            checkpointing_steps = int(args.checkpointing_steps)
    else:
        checkpointing_steps = None

    # Scheduler and math around the number of training steps.
    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    else:
        args.num_train_epochs = math.ceil(args.max_train_steps /
                                          num_update_steps_per_epoch)

    lr_scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader, lr_scheduler)

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(
        len(train_dataloader) / args.gradient_accumulation_steps)
    args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch

    # Instantiate metric
    metric = load_metric("mean_iou")

    if args.with_tracking:
        experiment_config = vars(args)
        # TensorBoard cannot log Enums, need the raw value
        experiment_config["lr_scheduler_type"] = experiment_config[
            "lr_scheduler_type"].value
        accelerator.init_trackers("semantic_segmentation_no_trainer",
                                  experiment_config)

    # Train!
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(
        f"  Instantaneous batch size per device = {args.per_device_train_batch_size}"
    )
    logger.info(
        f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
    )
    logger.info(
        f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps),
                        disable=not accelerator.is_local_main_process)
    completed_steps = 0
    starting_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
            accelerator.print(
                f"Resumed from checkpoint: {args.resume_from_checkpoint}")
            accelerator.load_state(args.resume_from_checkpoint)
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
            dirs.sort(key=os.path.getctime)
            path = dirs[
                -1]  # Sorts folders by date modified, most recent checkpoint is the last
        # Extract `epoch_{i}` or `step_{i}`
        training_difference = os.path.splitext(path)[0]

        if "epoch" in training_difference:
            starting_epoch = int(training_difference.replace("epoch_", "")) + 1
            resume_step = None
        else:
            resume_step = int(training_difference.replace("step_", ""))
            starting_epoch = resume_step // len(train_dataloader)
            resume_step -= starting_epoch * len(train_dataloader)

    for epoch in range(starting_epoch, args.num_train_epochs):
        if args.with_tracking:
            total_loss = 0
        model.train()
        for step, batch in enumerate(train_dataloader):
            # We need to skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == starting_epoch:
                if resume_step is not None and step < resume_step:
                    completed_steps += 1
                    continue
            outputs = model(**batch)
            loss = outputs.loss
            # We keep track of the loss at each epoch
            if args.with_tracking:
                total_loss += loss.detach().float()
            loss = loss / args.gradient_accumulation_steps
            accelerator.backward(loss)
            if step % args.gradient_accumulation_steps == 0 or step == len(
                    train_dataloader) - 1:
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                completed_steps += 1

            if isinstance(checkpointing_steps, int):
                if completed_steps % checkpointing_steps == 0:
                    output_dir = f"step_{completed_steps }"
                    if args.output_dir is not None:
                        output_dir = os.path.join(args.output_dir, output_dir)
                    accelerator.save_state(output_dir)

                    if args.push_to_hub and epoch < args.num_train_epochs - 1:
                        accelerator.wait_for_everyone()
                        unwrapped_model = accelerator.unwrap_model(model)
                        unwrapped_model.save_pretrained(
                            args.output_dir,
                            is_main_process=accelerator.is_main_process,
                            save_function=accelerator.save,
                        )
                        if accelerator.is_main_process:
                            feature_extractor.save_pretrained(args.output_dir)
                            repo.push_to_hub(
                                commit_message=
                                f"Training in progress {completed_steps} steps",
                                blocking=False,
                                auto_lfs_prune=True,
                            )

            if completed_steps >= args.max_train_steps:
                break

        logger.info("***** Running evaluation *****")
        model.eval()
        samples_seen = 0
        for step, batch in enumerate(
                tqdm(eval_dataloader,
                     disable=not accelerator.is_local_main_process)):
            with torch.no_grad():
                outputs = model(**batch)

            upsampled_logits = torch.nn.functional.interpolate(
                outputs.logits,
                size=batch["labels"].shape[-2:],
                mode="bilinear",
                align_corners=False)
            predictions = upsampled_logits.argmax(dim=1)

            predictions, references = accelerator.gather(
                (predictions, batch["labels"]))

            # If we are in a multiprocess environment, the last batch has duplicates
            if accelerator.num_processes > 1:
                if step == len(eval_dataloader) - 1:
                    predictions = predictions[:len(eval_dataloader.dataset) -
                                              samples_seen]
                    references = references[:len(eval_dataloader.dataset) -
                                            samples_seen]
                else:
                    samples_seen += references.shape[0]

            metric.add_batch(
                predictions=predictions,
                references=references,
            )

        eval_metrics = metric.compute(
            num_labels=len(id2label),
            ignore_index=255,
            reduce_labels=False,  # we've already reduced the labels before
        )
        logger.info(f"epoch {epoch}: {eval_metrics}")

        if args.with_tracking:
            accelerator.log(
                {
                    "mean_iou": eval_metrics["mean_iou"],
                    "mean_accuracy": eval_metrics["mean_accuracy"],
                    "overall_accuracy": eval_metrics["overall_accuracy"],
                    "train_loss": total_loss,
                    "epoch": epoch,
                    "step": completed_steps,
                }, )

        if args.push_to_hub and epoch < args.num_train_epochs - 1:
            accelerator.wait_for_everyone()
            unwrapped_model = accelerator.unwrap_model(model)
            unwrapped_model.save_pretrained(
                args.output_dir,
                is_main_process=accelerator.is_main_process,
                save_function=accelerator.save)
            if accelerator.is_main_process:
                feature_extractor.save_pretrained(args.output_dir)
                repo.push_to_hub(
                    commit_message=f"Training in progress epoch {epoch}",
                    blocking=False,
                    auto_lfs_prune=True)

        if args.checkpointing_steps == "epoch":
            output_dir = f"epoch_{epoch}"
            if args.output_dir is not None:
                output_dir = os.path.join(args.output_dir, output_dir)
            accelerator.save_state(output_dir)

    if args.output_dir is not None:
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        unwrapped_model.save_pretrained(
            args.output_dir,
            is_main_process=accelerator.is_main_process,
            save_function=accelerator.save)
        if accelerator.is_main_process:
            feature_extractor.save_pretrained(args.output_dir)
            if args.push_to_hub:
                repo.push_to_hub(commit_message="End of training",
                                 auto_lfs_prune=True)

            with open(os.path.join(args.output_dir, "all_results.json"),
                      "w") as f:
                json.dump(
                    {
                        "eval_overall_accuracy":
                        eval_metrics["overall_accuracy"]
                    }, f)