示例#1
0
def test():
    # TODO : Test Later
    print('==> Testing network..')
    # Make predictions on full X_test mels
    y_predicted = accuracy.predict_class_all(create_segmented_mels(X_test), a_net)

    # Print statistics
    print(np.sum(accuracy.confusion_matrix(y_predicted, y_test),axis=1))
    print(accuracy.confusion_matrix(y_predicted, y_test))
    print(accuracy.get_accuracy(y_predicted,y_test))
示例#2
0
    X_test = pool.map(get_wav, X_test)

    # Convert to MFCC
    if DEBUG:
        print('converting to mfcc')
    X_train = pool.map(to_mfcc, X_train)
    X_test = pool.map(to_mfcc, X_test)

    # Create segments from MFCCs
    X_train, y_train = make_segments(X_train, y_train)
    X_validation, y_validation = make_segments(X_test, y_test)

    # Randomize training segments
    X_train, _, y_train, _ = train_test_split(X_train, y_train, test_size=0)

    # Train model
    model = train_model(np.array(X_train), np.array(y_train), np.array(X_validation),np.array(y_validation))

    # Make predictions on full X_test MFCCs
    y_predicted = accuracy.predict_class_all(create_segmented_mfccs(X_test), model)

    # Print statistics
    print train_count
    print test_count
    print acc_to_beat
    print np.sum(accuracy.confusion_matrix(y_predicted, y_test),axis=1)
    print accuracy.confusion_matrix(y_predicted, y_test)
    print accuracy.get_accuracy(y_predicted,y_test)

    # Save model
    save_model(model, model_filename)
    if DEBUG:
        print('Converting to MFCC....')
    X_train = pool.map(to_mfcc, X_train)
    X_test = pool.map(to_mfcc, X_test)

    # Create segments from MFCCs
    X_train, y_train = make_segments(X_train, y_train)
    X_validation, y_validation = make_segments(X_test, y_test)

    # Randomize training segments
    X_train, _, y_train, _ = train_test_split(X_train, y_train, test_size=0.2)

    # Train model
    model = train_model(np.array(X_train), np.array(y_train), np.array(X_validation),np.array(y_validation))

    # Make predictions on full X_test MFCCs
    y_predicted = accuracy.predict_class_all(create_segmented_mfccs(X_test), model)

    # Save model
    save_model(model, model_filename)

    # Print statistics
    print('Training samples:', train_count)
    print('Testing samples:', test_count)
    print('Accuracy to beat:', acc_to_beat)
    print('Confusion matrix of total samples:\n', np.sum(accuracy.confusion_matrix(y_predicted, y_test),axis=1))
    print('Confusion matrix:\n',accuracy.confusion_matrix(y_predicted, y_test))
    print('Accuracy:', accuracy.get_accuracy(y_predicted,y_test))


示例#4
0
zs = var_auto.encode(data)


model = KMeans(n_clusters=n_clusters, random_state=42, n_init=20)
#model = SpectralClustering(n_clusters=n_clusters, eigen_solver='arpack', affinity="nearest_neighbors")
#model = DBSCAN(eps=.2)
results = model.fit_predict(zs)
#joblib.dump(model, "F:/Fer-novo/Diplomski rad/modeli/saves/kmeans.pkl") # optional storing the model for future use

# tsne on clusters on train data
tsne = TSNE(n_components = 2, random_state=42)
tsne_results = tsne.fit_transform(zs[-1300:])
P.scatterTsne(tsne_results, results[-1300:])

#tsne for test data
test_data_all = np.array([]).reshape(0, num)
for test_data in test_set_list:
    test_data_all = np.append(test_data_all, test_data, axis=0)
padding = np.zeros(1000*num).reshape(1000, num)
test_data_all = np.append(test_data_all, padding.reshape(-1, num), axis=0)

zs_test = var_auto.encode(test_data_all)[:(test_set_size * len(test_set_list))]
tsne_results_test = tsne.fit_transform(zs_test)
P.scatterTsne(tsne_results_test, model.predict(zs_test))

#save results
#D.saveResults(save_folder, results, original_data)

print(A.confusion_matrix(test_set_list, var_auto, model, n_clusters, num=num, test_set_size=test_set_size))

    # X_validation, y_validation = make_segments(X_test, y_test)
    X_train, X_validation, y_train, y_validation = train_test_split(
        X_train, y_train, test_size=0.15)
    # print "Validation shape: {}".format(X_validation)
    # Randomize training segments
    X_train, _, y_train, _ = train_test_split(X_train, y_train, test_size=0)

    if network == 'cnn':
        # Train model
        model = train_model(np.array(X_train), np.array(y_train),
                            np.array(X_validation), np.array(y_validation),
                            EPOCHS)
        # Make predictions on full X_test MFCCs
        y_predicted = accuracy.predict_class_all(
            create_segmented_mfccs(X_test), model, 'cnn')
        class_sum = np.sum(accuracy.confusion_matrix(y_predicted, y_test),
                           axis=1)
        confusion_matrix = accuracy.confusion_matrix(y_predicted, y_test)
        print confusion_matrix
        print accuracy.get_accuracy(y_predicted, y_test)
        show_confusion_matrix(confusion_matrix, plt,
                              ['mandarin', 'arabic', 'english'], 'cnn')

    if network == 'lstm':
        # Train Lstm Model
        lstm = train_lstm_model(np.array(X_train), np.array(y_train),
                                np.array(X_validation), np.array(y_validation),
                                EPOCHS)
        y_predicted_lstm = accuracy.predict_class_all(
            create_segmented_mfccs(X_test), lstm, 'lstm')
        print np.sum(accuracy.confusion_matrix(y_predicted_lstm, y_test),
示例#6
0
        # print (trainer)

        # Train model
        model = train_model(np.array(X_train), np.array(y_train),
                            np.array(X_validation), np.array(y_validation))
        # model = load_model("model.h5")
        # predicted = model.predict (k.create_segmented_mfccs(X_test))
        # for i in predicted:
        #     print (i)
        # Make predictions on full X_test MFCCs
        y_predicted = accuracy.predict_class_all(
            k.create_segmented_mfccs(X_test), model)
        # print (y_predicted)
        # for i in y_predicted:
        #     print (i)
        # Print statistics
        print('Training samples:', train_count)
        print('Testing samples:', test_count)
        print('Accuracy to beat:', acc_to_beat)
        print('Confusion matrix of total samples:\n',
              np.sum(accuracy.confusion_matrix(y_predicted, y_test), axis=1))
        print('Confusion matrix:\n',
              accuracy.confusion_matrix(y_predicted, y_test))
        print('Accuracy:', accuracy.get_accuracy(y_predicted, y_test))

        results.append(accuracy.confusion_matrix(y_predicted, y_test))
        acc.append(accuracy.get_accuracy(y_predicted, y_test))
        # Save model
    print(results)
    print(acc)
    save_model(model, model_filename)