def visualize_mat_proba(pr, path, file_name_no_extension, time_indices=None): if time_indices: start_time, end_time = time_indices pr = pr[start_time:end_time, :] temp_csv = path + '/' + file_name_no_extension + '.csv' np.savetxt(temp_csv, pr, delimiter=',') dump_to_csv(temp_csv, temp_csv) write_numpy_array_html(path + '/' + file_name_no_extension + ".html", file_name_no_extension, 'rainbow', (0, 1), d3js_source_path='/Users/leo/Recherche/GitHub_Aciditeam/acidano/acidano/visualization/d3.v3.min.js')
def visualize_dict(pr, path, file_name_no_extension, time_indices=None): AAA = sum_along_instru_dim(pr) if time_indices: start_time, end_time = time_indices AAA = AAA[start_time:end_time, :] temp_csv = path + '/' + file_name_no_extension + '.csv' np.savetxt(temp_csv, AAA, delimiter=',') dump_to_csv(temp_csv, temp_csv) write_numpy_array_html(path + '/' + file_name_no_extension + ".html", file_name_no_extension, d3js_source_path='/Users/leo/Recherche/GitHub_Aciditeam/acidano/acidano/visualization/d3.v3.min.js')
def aux(var, name, csv_path, html_path): np.savetxt(csv_path, var, delimiter=',') dump_to_csv(csv_path, csv_path) write_numpy_array_html(html_path, name) return
T = matrix.shape[0] N = 128 for instrument_name, ranges in mapping.iteritems(): index_min = ranges['index_min'] index_max = ranges['index_max'] pitch_min = ranges['pitch_min'] pitch_max = ranges['pitch_max'] this_pr = np.zeros((T,N), dtype=np.int16) this_pr[:,pitch_min:pitch_max] = matrix[:,index_min:index_max] this_pr = this_pr * max_velocity pr_instru[instrument_name] = this_pr return pr_instru if __name__ == '__main__': import cPickle as pickle metadata = pickle.load(open('../Data/metadata.pkl', 'rb')) instru_mapping = metadata['instru_mapping'] pr = np.tile(np.arange(1,590,1), (50,1)) pr_instru = reconstruct_pr(pr, instru_mapping, False) # Visualisation AAA = np.concatenate(pr_instru.values(), axis=1) temp_csv = 'temp.csv' np.savetxt(temp_csv, AAA, delimiter=',') dump_to_csv(temp_csv, temp_csv) write_numpy_array_html("temp.html", "temp")
def check_orchestration_alignment(path_db, subfolder_names, quantization, gapopen, gapextend): output_dir = 'DEBUG/' + str(quantization) +\ '_' + str(gapopen) +\ '_' + str(gapextend) if not os.path.exists(output_dir): os.makedirs(output_dir) else: # Avoid re-running the algo on already tested parameters return counter = 0 sum_score = 0 nbFrame = 0 nbId = 0 nbDiffs = 0 # num_track_browsed = 30 for sub_db in subfolder_names: print '#' * 30 print sub_db sub_db_path = path_db + '/' + sub_db if not os.path.isdir(sub_db_path): continue # list_tracks_dir = os.listdir(sub_db_path) # ind_folder = np.random.permutation(len(list_tracks_dir)) # for ind in ind_folder[:num_track_browsed]: # for ind in list_tracks_dir: # folder_name = list_tracks_dir[ind] for folder_name in os.listdir(sub_db_path): print '#' * 20 print '#' + folder_name + '\n' folder_path = sub_db_path + '/' + folder_name if not os.path.isdir(folder_path): continue # Get instrus and prs from a folder name name pr0, instru0, T0, path_0, pr1, instru1, T1, path_1 = build_data_aux.get_instru_and_pr_from_folder_path(folder_path, quantization=quantization, clip=True) # name_0 = re.split('/', path_0)[-1] # name_1 = re.split('/', path_1)[-1] ################################################ ################################################ # def auxiaux(pr, limit): # pr_bis = pr # pr = {} # for k,v in pr_bis.iteritems(): # pr[k] = v[:limit,:] # return pr # pr0 = auxiaux(pr0, 26) # pr1 = auxiaux(pr1, 48) ################################################ ################################################ # Get trace from needleman_wunsch algorithm # Traces are binary lists, 0 meaning a gap is inserted trace_0, trace_1, this_sum_score, this_nbId, this_nbDiffs = needleman_chord_wrapper(sum_along_instru_dim(pr0), sum_along_instru_dim(pr1)) # Wrap dictionnaries according to the traces assert(len(trace_0) == len(trace_1)), "size mismatch" pr0_warp = warp_dictionnary_trace(pr0, trace_0) pr1_warp = warp_dictionnary_trace(pr1, trace_1) # In fact we just discard 0 in traces for both pr trace_prod = [e1 * e2 for (e1,e2) in zip(trace_0, trace_1)] if sum(trace_prod) == 0: # It's definitely not a match... # Check for the files : are they really an piano score and its orchestration ?? with(open('log.txt', 'a')) as f: f.write(folder_path + '\n') continue pr0_aligned = remove_zero_in_trace(pr0_warp, trace_prod) pr1_aligned = remove_zero_in_trace(pr1_warp, trace_prod) # Sum all instrument AAA_warp = sum_along_instru_dim(pr0_warp) BBB_warp = sum_along_instru_dim(pr1_warp) OOO_warp = np.zeros((BBB_warp.shape[0], 30), dtype=np.int16) CCC_warp = np.concatenate((AAA_warp, OOO_warp, BBB_warp), axis=1) AAA_aligned = sum_along_instru_dim(pr0_aligned) BBB_aligned = sum_along_instru_dim(pr1_aligned) OOO_aligned = np.zeros((BBB_aligned.shape[0], 30), dtype=np.int16) CCC_aligned = np.concatenate((AAA_aligned, OOO_aligned, BBB_aligned), axis=1) # Update statistics nbFrame += len(trace_0) sum_score += this_sum_score nbId += this_nbId nbDiffs += this_nbDiffs counter = counter + 1 # Save every 100 example if not counter % 10 == 0: continue save_folder_name = output_dir +\ '/' + sub_db + '_' + folder_name if not os.path.exists(save_folder_name): os.makedirs(save_folder_name) temp_csv = save_folder_name + '/warp.csv' np.savetxt(temp_csv, CCC_warp, delimiter=',') dump_to_csv(temp_csv, temp_csv) write_numpy_array_html(save_folder_name + "/pr_warp.html", "warp") temp_csv = save_folder_name + '/aligned.csv' np.savetxt(temp_csv, CCC_aligned, delimiter=',') dump_to_csv(temp_csv, temp_csv) write_numpy_array_html(save_folder_name + "/pr_aligned.html", "aligned") write_midi(pr={'piano1': sum_along_instru_dim(pr0)}, quantization=quantization, write_path=save_folder_name + '/0.mid', tempo=80) write_midi(pr={'piano1': sum_along_instru_dim(pr1)}, quantization=quantization, write_path=save_folder_name + '/1.mid', tempo=80) write_midi(pr={'piano1': AAA_warp, 'piano2': BBB_warp}, quantization=quantization, write_path=save_folder_name + '/both__warp.mid', tempo=80) write_midi(pr={'piano1': AAA_aligned, 'piano2': BBB_aligned}, quantization=quantization, write_path=save_folder_name + '/both__aligned.mid', tempo=80) # Write statistics mean_score = float(sum_score) / nbFrame nbId_norm = nbId / quantization nbDiffs_norm = nbDiffs / quantization with open(output_dir + '/log.txt', 'wb') as f: f.write("##########################\n" + "quantization = %d\n" % quantization + "Gapopen = %d\n" % gapopen + "Gapextend = %d\n" % gapextend + "Number frame = %d\n" % nbFrame + "\n\n\n" + "Sum score = %d\n" % sum_score+ "Mean score = %f\n" % mean_score+ "Number id = %d\n" % nbId + "Number id / quantization = %d\n" % nbId_norm+ "Number diffs = %d\n" % nbDiffs+ "Number diffs / quantization = %d\n" % nbDiffs_norm)