import matplotlib.pyplot as plt from matplotlib.patches import Polygon,Rectangle #fft block size block = 128 #example data micgeofile = path.join( path.split(acoular.__file__)[0],'xml','array_56.xml') mg = acoular.MicGeom( from_file=micgeofile ) ts = acoular.TimeSamples( name='example_data.h5' ) ps = acoular.PowerSpectra( time_data=ts, block_size=128, window='Hanning' ) rg = acoular.RectGrid(x_min=-0.6, x_max=-0.0, y_min=-0.3, y_max=0.3, z=0.68, increment=0.02) st = acoular.SteeringVector( grid = rg, mics=mg ) f = acoular.PowerSpectra(time_data=ts,block_size=block) bf = acoular.BeamformerBase(freq_data = f,steer= st) #Integrate function can deal with multiple methods for integration: #1. a circle containing of three values: x-center, y-center and radius circle = array([-0.3,-0.1, 0.05]) #2. a rektange containing of 4 values: lower corner(x1, y1) and upper corner(x2, y2). rect = array([-0.5, -0.15, -0.4 , 0.15]) #3. a polygon containing of vector tuples: x1,y1,x2,y2,...,xi,yi poly = array([ -0.25, -0.1, -0.1, -0.1, -0.1, -0.2, -0.2, -0.25, -0.3, -0.2]) #4 alternative: define those sectors as Classes circle_sector = acoular.CircSector(x=-0.3,y= -0.1, r= 0.05)
#------------------------------------------------------------------------------ """ Loads the three sources test data set, analyzes them and generates a map of the three sources. """ from os import path import acoular from pylab import figure, plot, axis, imshow, colorbar, show micgeofile = path.join(path.split(acoular.__file__)[0], 'xml', 'array_64.xml') datafile = 'three_sources.h5' mg = acoular.MicGeom(from_file=micgeofile) ts = acoular.TimeSamples(name='three_sources.h5') ps = acoular.PowerSpectra(time_data=ts, block_size=128, window='Hanning') rg = acoular.RectGrid( x_min=-0.2, x_max=0.2, y_min=-0.2, y_max=0.2, z=0.3, \ increment=0.01 ) bb = acoular.BeamformerBase(freq_data=ps, grid=rg, mpos=mg) pm = bb.synthetic(8000, 3) Lm = acoular.L_p(pm) imshow( Lm.T, origin='lower', vmin=Lm.max()-10, extent=rg.extend(), \ interpolation='bicubic') colorbar() figure(2) plot(mg.mpos[0], mg.mpos[1], 'o') axis('equal') show()
""" Loads the three sources test data set, analyzes them and generates a map of the three sources. """ from os import path import acoular from pylab import figure, plot, axis, imshow, colorbar, show micgeofile = path.join(path.split(acoular.__file__)[0], 'xml', 'array_64.xml') datafile = 'three_sources.h5' mg = acoular.MicGeom(from_file=micgeofile) ts = acoular.TimeSamples(name='three_sources.h5') ps = acoular.PowerSpectra(time_data=ts, block_size=128, window='Hanning') rg = acoular.RectGrid( x_min=-0.2, x_max=0.2, y_min=-0.2, y_max=0.2, z=0.3, \ increment=0.01 ) st = acoular.SteeringVector(grid=rg, mics=mg) bb = acoular.BeamformerBase(freq_data=ps, steer=st) pm = bb.synthetic(8000, 3) Lm = acoular.L_p(pm) imshow( Lm.T, origin='lower', vmin=Lm.max()-10, extent=rg.extend(), \ interpolation='bicubic') colorbar() figure(2) plot(mg.mpos[0], mg.mpos[1], 'o') axis('equal') show()
sag = "4mic_sagust.h5" orta = "4mic_orta.h5" sol2 = "sol_ust_ses_20_01.h5" sag2 = "sag_alt_ses_20_01.h5" micgeofile = path.join(path.split(ac.__file__)[0], 'xml', 'array_4_2.xml') m = ac.MicGeom(from_file=micgeofile) g = ac.RectGrid(x_min=-4, x_max=4, y_min=-2, y_max=2, z=0.3, increment=0.01) t1 = ac.TimeSamples(name=sag2) cal = ac.Calib(from_file='calibration.xml') es = ac.EigSpectra(time_data=t1, block_size=512, window="Hanning", overlap='50%', calib=cal) bb = ac.BeamformerBase(freq_data=es, grid=g, mpos=m, r_diag=False) Lm = ac.L_p(bb.synthetic(500, 0)) """ plt.figure() plt.imshow( Lm.T, origin='lower', vmin=Lm.max()-10, extent=g.extend(), interpolation='bicubic') """ img = plt.imshow(Lm.T, origin='lower', vmin=Lm.max() - 10, extent=g.extend(), interpolation='bicubic') plt.axis('off')
t = ac.Mixer(source = p0, sources = [p1,]) # Saving 32 channel wav # ww = ac.WriteWAV(source = t) # ww.channels = [0,32] # ww.save ##################### Frequency beamforming fixed focus ###################### fi = ac.PowerSpectra(time_data=t, window='Hanning', overlap='50%', block_size=128, \ ind_low=1,ind_high=15) # CSM calculation g = ac.RectGrid(x_min=-2, x_max=+2, y_min=0, y_max=+4, z=5, increment=0.1) st = ac.SteeringVector(grid=g, mics=m) b = ac.BeamformerBase(freq_data=fi, steer=st) map1 = b.synthetic(f,3) mx = ac.L_p(map1.max()) plot.figure() plot.imshow(ac.L_p(np.transpose(map1)), vmax=mx, vmin=mx-5, interpolation='bilinear',\ extent=g.extend(), origin='lower') plot.colorbar() ##################### Time beamforming moving focus ########################## fi = ac.FiltFiltOctave(source=t, band=f, fraction='Third octave') g = ac.RectGrid(x_min=-2.0, x_max=+2.0, y_min=0.0, y_max=+4.0, z=0.0, \ increment=0.1)# grid point of origin is at trajectory (thus z=0) st = ac.SteeringVector(grid=g, mics=m) # beamforming with trajectory (rvec axis perpendicular to trajectory)