# first, we define the time samples using the MaskedTimeSamples class # alternatively we could use the TimeSamples class that provides no masking # of channels and samples #=============================================================================== t1 = MaskedTimeSamples(name=datafile) t1.start = 0 # first sample, default t1.stop = 16000 # last valid sample = 15999 invalid = [1, 7] # list of invalid channels (unwanted microphones etc.) t1.invalid_channels = invalid #=============================================================================== # calibration is usually needed and can be set directly at the TimeSamples # object (preferred) or for frequency domain processing at the PowerSpectra # object (for backwards compatibility) #=============================================================================== t1.calib = Calib(from_file=calibfile) #=============================================================================== # the microphone geometry must have the same number of valid channels as the # TimeSamples object has #=============================================================================== m = MicGeom(from_file=micgeofile) m.invalid_channels = invalid #=============================================================================== # the grid for the beamforming map; a RectGrid3D class is also available # (the example grid is very coarse) #=============================================================================== g = RectGrid(x_min=-0.6, x_max=-0.0, y_min=-0.3,
# imports from acoular import acoular from acoular import L_p, TimeSamples, Calib, MicGeom, EigSpectra,\ RectGrid3D, BeamformerBase, BeamformerFunctional, BeamformerEig, BeamformerOrth, \ BeamformerCleansc, BeamformerCapon, BeamformerMusic, BeamformerCMF, PointSpreadFunction, BeamformerClean, BeamformerDamas # other imports from os import path #from mayavi import mlab from numpy import amax #from cPickle import dump, load from pickle import dump, load # see example3 t = TimeSamples(name='example_data.h5') cal = Calib(from_file='example_calib.xml') m = MicGeom(from_file=path.join(\ path.split(acoular.__file__)[0], 'xml', 'array_56.xml')) g = RectGrid3D(x_min=-0.6, x_max=-0.0, y_min=-0.3, y_max=0.3, \ z_min=0.48, z_max=0.88, increment=0.1) f = EigSpectra(time_data=t, window='Hanning', overlap='50%', block_size=128, ind_low=5, ind_high=15) csm = f.csm[:] eva = f.eva[:] eve = f.eve[:] #""" Creating the beamformers