def test_indexer(self):
        indexer = GraspIndexer(gripper_classes=[0.04, 0.06, 0.08])

        def define_action(d=0.0, index=0):
            a = Action()
            a.pose.d = d
            a.index = index
            return a

        self.assertEqual(indexer.from_action(define_action(d=0.04)), 0)
        self.assertEqual(indexer.from_action(define_action(d=0.059)), 1)
        self.assertEqual(indexer.from_action(define_action(d=0.06)), 1)
        self.assertEqual(indexer.from_action(define_action(d=0.07)), 2)
        self.assertEqual(indexer.from_action(define_action(d=0.08)), 2)
        self.assertEqual(indexer.from_action(define_action(d=0.1)), 2)

        a = define_action(index=2)
        indexer.to_action(a)
        self.assertEqual(indexer.from_action(a), 2)
    # inference = InferencePlanarPose(
    #   Loader.get_model('shifting', 'model-3'),
    #   box=Config.box,
    # )

    _, image = Loader.get_action('cylinder-cube-mc-1',
                                 '2019-07-02-13-27-22-246', 'ed-v')

    indexer = GraspIndexer(gripper_classes=Config.gripper_classes)

    converter = Converter(grasp_z_offset=Config.grasp_z_offset, box=Config.box)

    times = []
    for i in range(1):
        start = time.time()
        action = inference.infer([image], SelectionMethod.Top5, verbose=1)
        indexer.to_action(action)

        end = time.time()
        times.append(end - start)

    converter.calculate_pose(action, [image])
    print(action)
    print(
        f'Mean inference time [ms]: {(np.array(times[1:]).mean() * 1000):0.5f}'
    )

    draw_pose(image, action.pose, convert_to_rgb=True)
    cv2.imshow('image', image.mat)
    cv2.waitKey(1500)
示例#3
0
class Agent:
    def __init__(self, **params):
        self.model = Config.grasp_model
        self.watch_for_model_modification = True
        self.model_last_modified = Loader.get_model_path(
            self.model).stat().st_mtime

        self.monte_carlo = 40 if 'mc' in self.model[1] else None
        self.with_types = 'types' in self.model[1]

        self.output_layer = 'prob' if not self.with_types else ['prob', 'type']
        self.inference = InferencePlanarPose(
            model=Loader.get_model(self.model, output_layer=self.output_layer),
            box=Config.box,
            lower_random_pose=Config.lower_random_pose,
            upper_random_pose=Config.upper_random_pose,
            monte_carlo=self.monte_carlo,
            with_types=self.with_types,
        )
        self.inference.keep_indixes = None
        self.indexer = GraspIndexer(gripper_classes=Config.gripper_classes)
        self.converter = Converter(grasp_z_offset=Config.grasp_z_offset,
                                   box=Config.box)

        # # self.indexer = GraspFinalDIndexer(gripper_classes=Config.gripper_classes, final_d_classes=[0.0, 0.035])
        # self.indexer = LateralIndexer(
        #     angles=[(0, 0), (0.3, 0)],
        #     gripper_classes=[0.05, 0.07, 0.084],
        # )
        # self.converter = Converter(grasp_z_offset=Config.grasp_z_offset, box=Config.box)

        self.reinfer_next_time = True  # Always true in contrast to AgentPredict

    def check_for_model_reload(self):
        current_model_st_mtime = Loader.get_model_path(
            self.model).stat().st_mtime
        if self.watch_for_model_modification and current_model_st_mtime > self.model_last_modified + 0.5:  # [s]
            logger.warning(f'Reload model {self.model}.')
            try:
                self.inference.model = Loader.get_model(
                    self.model, output_layer=self.output_layer)
                self.model_last_modified = Loader.get_model_path(
                    self.model).stat().st_mtime
            except OSError:
                logger.info('Could not load model, probabily file locked.')

    def infer(self, images: List[OrthographicImage], method: SelectionMethod,
              **params) -> List[Action]:
        if self.monte_carlo:  # Adapt monte carlo progress parameter s
            epoch_in_collection = Loader.get_episode_count(Config.collection)
            s_not_bounded = (epoch_in_collection - 3500) * 1 / (4500 - 3500)
            self.inference.current_s = max(min(s_not_bounded, 1.0), 0.0)

        self.check_for_model_reload()

        if len(images) == 3:
            images[2].mat = images[2].mat[:, :, ::-1]  # BGR to RGB

        action = self.inference.infer(images, method)
        self.indexer.to_action(action)

        print(action, method)

        estimated_reward_lower_than_threshold = action.estimated_reward < Config.bin_empty_at_max_probability
        bin_empty = estimated_reward_lower_than_threshold and Epoch.selection_method_should_be_high(
            method)

        if bin_empty:
            return [Action('bin_empty', safe=1)]

        self.converter.calculate_pose(action, images)
        return [action]

    def reward_for_action(self, images: List[OrthographicImage],
                          action: Action) -> float:
        estimated_rewards = self.inference.infer_at_pose(images, action.pose)
        if isinstance(estimated_rewards, tuple):
            estimated_rewards, _ = estimated_rewards

        index = self.indexer.from_action(action)
        return estimated_rewards[0][0][index]
示例#4
0
class Agent:
    def __init__(self, prediction_model):
        self.grasp_model = Config.grasp_model
        self.shift_model = Config.shift_model

        self.with_types = 'types' in self.grasp_model[1]

        self.output_layer = 'prob' if not self.with_types else ['prob', 'type']
        self.grasp_inference = InferencePlanarPose(
            Loader.get_model(self.grasp_model, output_layer=self.output_layer),
            box=Config.box,
            lower_random_pose=Config.lower_random_pose,
            upper_random_pose=Config.upper_random_pose,
            with_types=self.with_types,
            input_uncertainty=True,
        )
        self.grasp_inference.keep_indixes = [0, 1]
        self.grasp_indexer = GraspIndexer(
            gripper_classes=Config.gripper_classes)

        self.shift_inference = InferencePlanarPose(
            Loader.get_model(self.shift_model, output_layer='prob'),
            box=Config.box,
            lower_random_pose=Config.lower_random_pose,
            upper_random_pose=Config.upper_random_pose,
            with_types=False,
        )
        self.shift_inference.a_space = np.linspace(
            -3.0, 3.0, 26)  # [rad] # Don't use a=0.0
        self.shift_inference.size_original_cropped = (240, 240)
        self.shift_indexer = ShiftIndexer(shift_distance=Config.shift_distance)

        self.grasp_shift_indexer = GraspShiftIndexer(
            gripper_classes=Config.gripper_classes,
            shift_distance=Config.shift_distance,
        )

        self.converter = Converter(grasp_z_offset=Config.grasp_z_offset,
                                   shift_z_offset=0.007,
                                   box=Config.box)  # [m]

        self.prediction_model = prediction_model
        self.monte_carlo = 20

        self.actions_since_last_inference = 0
        self.actions: List[Action] = []

        self.output_path = Path.home() / 'Desktop'

        self.reinfer_next_time = True

        # First inference is slower
        self.prediction_model.predict([
            np.zeros((1, 64, 64, 1)),
            np.zeros((1, 1, 1, 1)),
            np.zeros((1, 1, 1)),
            np.zeros((1, 1, 1, 8))
        ])

    def predict_images_after_action(
        self,
        images: List[OrthographicImage],
        action: Action,
        reward: float,
        action_type: int,
        uncertainty_images=None,
    ) -> List[OrthographicImage]:
        image = images[0]
        uncertainty_image = uncertainty_images[0]

        start = time.time()
        draw_around_box(image, box=Config.box)
        area = get_area_of_interest(image,
                                    action.pose,
                                    size_cropped=(256, 256),
                                    size_result=(64, 64))

        area_input = np.expand_dims(area.mat, axis=2).astype(
            np.float32) / np.iinfo(np.uint16).max * 2 - 1
        reward = np.expand_dims(np.expand_dims(np.expand_dims(reward, axis=1),
                                               axis=1),
                                axis=1).astype(np.float32)
        action_type = np.expand_dims(np.expand_dims(action_type, axis=1),
                                     axis=1)

        use_monte_carlo = self.monte_carlo and self.monte_carlo > 1

        if not use_monte_carlo:
            area_result = self.prediction_model.predict([[area_input],
                                                         [reward],
                                                         [action_type],
                                                         np.zeros(
                                                             (1, 1, 1, 8))])[0]
            area_result = np.array(np.iinfo(np.uint16).max *
                                   (area_result + 1) / 2,
                                   dtype=np.uint16)

        else:
            latent = np.random.normal(scale=0.05,
                                      size=(self.monte_carlo, 1, 1, 8))
            if self.monte_carlo > 3:
                latent[0, :, :, :] = 0.0

            predictions = self.prediction_model.predict([
                [area_input for _ in range(self.monte_carlo)],
                [reward for _ in range(self.monte_carlo)],
                [action_type for _ in range(self.monte_carlo)],
                latent,
            ])
            predictions = (predictions + 1) / 2

            predictions = np.array(predictions, dtype=np.float32)
            area_result = predictions[0]
            area_result = np.array(np.iinfo(np.uint16).max * area_result,
                                   dtype=np.uint16)

            predictions[predictions < 0.1] = np.nan
            area_uncertainty = np.nanvar(predictions, axis=0)
            area_uncertainty *= 7e3
            area_uncertainty[area_uncertainty > 1] = 1
            area_uncertainty = np.array(np.iinfo(np.uint16).max *
                                        area_uncertainty,
                                        dtype=np.uint16)

            uncertainty_image = patch_image_at(
                uncertainty_image,
                area_uncertainty,
                action.pose,
                size_cropped=(256, 256),
                operation='add',
            )

        result = patch_image_at(image,
                                area_result,
                                action.pose,
                                size_cropped=(256, 256))

        logger.info(f'Predicted image [s]: {time.time() - start:0.3f}')

        if use_monte_carlo:
            return [result], [uncertainty_image]
        return [result]

    def plan_actions(
        self,
        images: List[OrthographicImage],
        method: SelectionMethod,
        depth=1,
        leaves=1,
        verbose=False,
    ) -> List[Action]:

        uncertainty_images = [
            OrthographicImage(np.zeros(i.mat.shape,
                                       dtype=np.uint16), i.pixel_size,
                              i.min_depth, i.max_depth, i.camera, i.pose)
            for i in images
        ]

        tree = PlanningTree(images, uncertainty_images)

        for node, i in tree.fill_nodes(leaves=leaves, depth=depth):
            # Visited actions: node.actions

            for image in node.images:
                draw_around_box(image, box=Config.box)

            grasp = self.grasp_inference.infer(
                node.images,
                method,
                uncertainty_images=node.uncertainty_images)
            self.grasp_indexer.to_action(grasp)

            # Shift actions
            if Config.shift_objects and grasp.estimated_reward < Config.grasp_shift_threshold:
                shift = self.shift_inference.infer(node.images, method)
                self.shift_indexer.to_action(shift)

                bin_empty = shift.estimated_reward < Config.shift_empty_threshold

                if bin_empty:
                    action = Action('bin_empty', safe=1)
                else:
                    self.converter.calculate_pose(shift, node.images)
                    action = shift

            # Grasp actions
            else:
                estimated_reward_lower_than_threshold = grasp.estimated_reward < Config.bin_empty_at_max_probability
                bin_empty = estimated_reward_lower_than_threshold and Epoch.selection_method_should_be_high(
                    method)
                new_image = False

                if bin_empty:
                    action = Action('bin_empty', safe=1)
                elif grasp.estimated_reward_std > 0.9:  # default=0.25
                    action = Action('new_image', safe=1)
                else:
                    self.converter.calculate_pose(grasp, node.images)
                    action = grasp
            logger.info(f'{i}: {action}')

            if verbose:
                image_copy = clone(images[0])
                uncertainty_image_copy = clone(uncertainty_images[0])

                draw_pose(image_copy, action.pose, convert_to_rgb=True)
                draw_pose(uncertainty_image_copy,
                          action.pose,
                          convert_to_rgb=True)

                cv2.imwrite(str(self.output_path / f'result-{i}.png'),
                            image_copy.mat)
                cv2.imwrite(str(self.output_path / f'uncertainty-{i}.png'),
                            uncertainty_image_copy.mat)

            if action.type == 'bin_empty' or action.type == 'new_image':
                break

            # Predict next image
            reward = action.estimated_reward > Config.bin_empty_at_max_probability if action.type == 'grasp' else action.estimated_reward
            action_type = self.grasp_shift_indexer.from_action(action)
            images = self.predict_images_after_action(
                node.images,
                action,
                reward=reward,
                action_type=action_type,
                uncertainty_images=node.uncertainty_images,
            )

            if isinstance(images, tuple):
                images, uncertainty_images = images
            else:
                uncertainty_images = None

            node.add_action(action, images, uncertainty_images)

        if verbose:
            cv2.imwrite(str(self.output_path / f'result-{i+1}.png'),
                        node.images[0].mat)
            cv2.imwrite(str(self.output_path / f'uncertainty-{i+1}.png'),
                        node.uncertainty_images[0].mat)

        actions, max_reward, mean_reward = tree.get_actions_maximize_reward(
            max_depth=depth)
        print(
            f'Max reward: {max_reward:0.3f}, Mean reward: {mean_reward:0.3f}, Length: {len(actions)}'
        )

        # actions, max_steps, mean_steps = tree.get_actions_minimize_steps()
        return actions

    def predict_actions(
        self,
        images: List[OrthographicImage],
        method: SelectionMethod,
        N=1,
        verbose=True,
    ) -> List[Action]:

        actions: List[Action] = []

        uncertainty_images = [
            OrthographicImage(np.zeros(i.mat.shape,
                                       dtype=np.uint16), i.pixel_size,
                              i.min_depth, i.max_depth, i.camera, i.pose)
            for i in images
        ]

        for i in range(N):
            for image in images:
                draw_around_box(image, box=Config.box)

            grasp = self.grasp_inference.infer(
                images, method, uncertainty_images=uncertainty_images)
            self.grasp_indexer.to_action(grasp)

            # Shift actions
            if Config.shift_objects and grasp.estimated_reward < Config.grasp_shift_threshold:
                shift = self.shift_inference.infer(images, method)
                self.shift_indexer.to_action(shift)

                bin_empty = shift.estimated_reward < Config.shift_empty_threshold

                if bin_empty:
                    actions.append(Action('bin_empty', safe=1))
                else:
                    self.converter.calculate_pose(shift, images)
                    actions.append(shift)

            # Grasp actions
            else:
                estimated_reward_lower_than_threshold = grasp.estimated_reward < Config.bin_empty_at_max_probability
                bin_empty = estimated_reward_lower_than_threshold and Epoch.selection_method_should_be_high(
                    method)
                new_image = False

                if bin_empty:
                    actions.append(Action('bin_empty', safe=1))
                elif grasp.estimated_reward_std > 0.9:  # default=0.25
                    actions.append(Action('new_image', safe=1))
                else:
                    self.converter.calculate_pose(grasp, images)
                    actions.append(grasp)

            actions[-1].step = i
            action = actions[-1]
            logger.info(f'{i}: {action}')

            if verbose:
                image_copy = clone(images[0])
                uncertainty_image_copy = clone(uncertainty_images[0])

                draw_pose(image_copy, action.pose, convert_to_rgb=True)
                draw_pose(uncertainty_image_copy,
                          action.pose,
                          convert_to_rgb=True)

                cv2.imwrite(str(self.output_path / f'result-{i}.png'),
                            image_copy.mat)
                cv2.imwrite(str(self.output_path / f'uncertainty-{i}.png'),
                            uncertainty_image_copy.mat)

            if action.type == 'bin_empty' or action.type == 'new_image':
                break

            # Predict next image
            reward = action.estimated_reward > Config.bin_empty_at_max_probability if action.type == 'grasp' else action.estimated_reward
            action_type = self.grasp_shift_indexer.from_action(action)
            images = self.predict_images_after_action(
                images,
                action,
                reward=reward,
                action_type=action_type,
                uncertainty_images=uncertainty_images,
            )

            if isinstance(images, tuple):
                images, uncertainty_images = images
            else:
                uncertainty_images = None

        if verbose:
            cv2.imwrite(str(self.output_path / f'result-{i+1}.png'),
                        images[0].mat)
            cv2.imwrite(str(self.output_path / f'uncertainty-{i+1}.png'),
                        uncertainty_images[0].mat)

        return actions

    def infer(self,
              images: List[OrthographicImage],
              method: SelectionMethod,
              N=5,
              reinfer=False):
        if self.actions_since_last_inference == 0 or self.actions_since_last_inference >= N or self.reinfer_next_time or reinfer:
            logger.warning(f'Calculate {N} predictions.')

            # self.actions = self.predict_actions(images, method, N=(N+1))
            self.actions = self.plan_actions(images, method, depth=N, leaves=1)
            self.actions_since_last_inference = 0
            self.reinfer_next_time = False
        else:
            logger.warning(
                f'Saved action, last inference {self.actions_since_last_inference} actions ago.'
            )
            if self.actions_since_last_inference == len(self.actions) - 2:
                self.reinfer_next_time = True

        self.actions_since_last_inference += 1
        return self.actions[self.actions_since_last_inference - 1]
示例#5
0
class Agent:
    def __init__(self):
        self.grasp_inference = InferencePlanarPose(
            model=Loader.get_model(Config.grasp_model, output_layer='prob'),
            box=Config.box,
            lower_random_pose=Config.lower_random_pose,
            upper_random_pose=Config.upper_random_pose,
        )
        self.grasp_indexer = GraspIndexer(gripper_classes=Config.gripper_classes)

        self.converter = Converter(grasp_z_offset=Config.grasp_z_offset, shift_z_offset=0.007, box=Config.box)  # [m]

        if Config.shift_objects:
            self.shift_inference = InferencePlanarPose(
                model=Loader.get_model(Config.shift_model, output_layer='prob'),
                box=Config.box,
                lower_random_pose=Config.lower_random_pose,
                upper_random_pose=Config.upper_random_pose,
            )
            self.shift_inference.a_space = np.linspace(-3.0, 3.0, 26)  # [rad] # Don't use a=0.0
            self.shift_inference.size_original_cropped = (240, 240)
            self.shift_indexer = ShiftIndexer(shift_distance=Config.shift_distance)

        self.reinfer_next_time = True  # Always true in contrast to AgentPredict

    def infer(self, images: List[OrthographicImage], method: SelectionMethod) -> Action:
        if len(images) == 3:
            images[2].mat = images[2].mat[:, :, ::-1]  # BGR to RGB

        grasp = self.grasp_inference.infer(images, method)
        self.grasp_indexer.to_action(grasp)

        estimated_reward_lower_than_threshold = grasp.estimated_reward < Config.bin_empty_at_max_probability
        bin_empty = estimated_reward_lower_than_threshold and Epoch.selection_method_should_be_high(method)

        if Config.shift_objects and grasp.estimated_reward < Config.grasp_shift_threshold:
            shift = self.shift_inference.infer(images, method)
            self.shift_indexer.to_action(shift)

            if shift.estimated_reward > Config.shift_empty_threshold:
                self.converter.calculate_pose(shift, images)
                return shift
            return Action('bin_empty', safe=1)

        if bin_empty:
            return Action('bin_empty', safe=1)

        self.converter.calculate_pose(grasp, images)
        return grasp

    def infer_shift(self, images: List[OrthographicImage], method: SelectionMethod) -> Action:
        shift = self.shift_inference.infer(images, method)
        self.shift_indexer.to_action(shift)
        return shift

    def infer_max_grasp_reward(self, images: List[OrthographicImage]) -> float:
        return self.grasp_inference.infer(images, SelectionMethod.Max).estimated_reward

    def infer_max_grasp_reward_around_action(
                self,
                images: List[OrthographicImage],
                action: Action,
                window=(0.13, 0.13)
        ) -> float:  # [m]
        input_images = [self.grasp_inference.get_images(d) for d in images]
        estimated_reward = self.grasp_inference.model.predict(input_images)

        for index_raveled in range(estimated_reward.size):
            index = np.unravel_index(index_raveled, estimated_reward.shape)
            pose = self.grasp_inference.pose_from_index(index, estimated_reward.shape, images[0])

            if not (
                    (action.pose.x - window[0] / 2 < pose.x < action.pose.x + window[0] / 2) and
                    (action.pose.y - window[1] / 2 < pose.y < action.pose.y + window[1] / 2)
                ):
                estimated_reward[index] = 0.0

        return np.max(estimated_reward)