示例#1
0
def test_softmax():
    print("gradient check: Softmax")
    x = np.random.rand(5 * 8).reshape((5, 8)).astype('float32')
    y = np.random.rand(5 * 8).reshape((5, 8)).astype('float32')

    softmax = activation.Softmax()
    sqaure_loss_func = loss.SquareLoss()

    softmax_x = softmax(x)
    square_loss = sqaure_loss_func(softmax_x, y)

    torch_x = torch.Tensor(x)
    torch_x.requires_grad = True
    softmax_torch = nn.Softmax()
    square_loss_func_torch = nn.MSELoss()
    softmax_x_torch = softmax_torch(torch_x)
    sqaure_loss_torch = square_loss_func_torch(softmax_x_torch,
                                               torch.Tensor(y))

    print("Value:\ntorch:{},mine:{}, delta:{}".format(
        sqaure_loss_torch.item(), square_loss,
        (sqaure_loss_torch.item() - square_loss)))

    # --- my grad ---
    grad_softmax = sqaure_loss_func.backward()
    grad_x = softmax.backward(grad_softmax)

    # --- torch grad ---
    sqaure_loss_torch.backward()
    grad_x_torch = torch_x.grad.data.numpy()

    print(grad_x_torch - grad_x)
示例#2
0
def test_cross_entropy_loss():
    print("gradient check: Cross Entropy")

    x = np.random.rand(5*8).reshape((5, 8)).astype('float32')
    softmax = activation.Softmax()
    x_soft = softmax(x)
    y = np.array([1, 4, 6, 3, 2], dtype='int32')
    y_onehot = np.zeros((5, 8)).astype('float32')
    y_onehot[range(0, 5), y] = 1.
    print(x)
    print('log loss: ', log_loss(y, x_soft, labels=[0, 1, 2, 3, 4, 5, 6, 7]))
    cross_entropy_f = loss.CrossEntropyLoss()
    cross_entropy_torch = nn.CrossEntropyLoss()

    torch_x = torch.Tensor(x)
    torch_x.requires_grad = True
    ce_loss_torch = cross_entropy_torch(torch_x, torch.LongTensor(y))
    ce_loss = cross_entropy_f(x_soft, y_onehot)
    print("Value:\ntorch:{},mine:{}, delta:{}"
          .format(ce_loss_torch.item(), ce_loss, (ce_loss-ce_loss_torch.item())))
    ce_loss_torch.backward()
    torch_x_grad = torch_x.grad.data.numpy()
    x_grad = softmax.backward(cross_entropy_f.backward())
    # print(np.sum(x_grad - torch_x_grad, 0))
    print(x_grad - torch_x_grad)
示例#3
0
 def get (self, Y_pred, Y_true):
   N = Y_pred.shape[0]
   softmax = activation.Softmax()
   prob = softmax._forward(Y_pred)
   loss = NLLLoss (prob, Y_true)
   Y_serial = np.argmax(Y_true, axis=1)
   dout = prob.copy()
   dout[np.arange(N), Y_serial] -= 1
   return loss, dout
示例#4
0
  def __init__(self):
    self.Cin = 1
    self.D_out = 10
    # Cin: input channel
    # Cout: output channel
    # F: kernel size 3x3
    # Conv1: Cin=1, Cout=6, F=3
    self.conv1 = conv_layer.Conv (self.Cin, 6, 3)
    self.ReLU1 = activation.ReLU ()
    self.pool1 = pooling.MaxPool (2,2)
    # Conv2: Cin=6, Cout=16, F=3
    self.conv2 = conv_layer.Conv (6, 16, 3)
    self.ReLU2 = activation.ReLU ()
    self.pool2 = pooling.MaxPool (2,2)
    # FC1 flatten to be 64*784
    self.FC1 = nn_layer.FC(784, 120)
    self.ReLU3 = activation.ReLU ()
    self.FC2 = nn_layer.FC (120, 84)
    self.ReLU4 = activation.ReLU ()
    self.FC3 = nn_layer.FC (84, self.D_out)
    self.Softmax = activation.Softmax ()

    self.p2_shape = None
示例#5
0
sys.path.append('../source')
import functions as f
import activation as act
import cost_functions as cost

from data_prep import DataPrep
from NeuralNetwork import NeuralNetwork

# set the parameters
n = 100
n_epochs = 300
n_batches = 100
neurons = [50, 50]
n_outputs = 10
hidden_act = act.Sigmoid()
output_act = act.Softmax()
cost_func = cost.CrossEntropy()
no_hidden = False
seed = 2034

# download MNIST dataset
digits = datasets.load_digits()

# define input data and labels
dataset = digits.images
labels = digits.target.reshape(-1, 1)

# flatten the image
N = len(dataset)
dataset = dataset.reshape(N, -1)
示例#6
0
def test_fully_connected():
    print("gradient check: FullyConnected")

    x = np.random.rand(5 * 8).reshape((5, 8)).astype('float32')
    y = np.array([1, 4, 6, 3, 2], dtype='int32')
    y_onehot = np.zeros((5, 12)).astype('float32')
    y_onehot[range(0, 5), y] = 1.

    # --- mine --
    fc1 = layer.FullyConnected(8, 10)
    fc2 = layer.FullyConnected(10, 12)
    relu1 = activation.ReLU()
    softmax = activation.Softmax()
    ce_func = loss.CrossEntropyLoss()
    fc_out1 = fc1(x)
    fc_out1 = relu1(fc_out1)
    fc_out2 = fc2(fc_out1)
    fc_out2 = softmax(fc_out2)
    sqaure_loss = ce_func(fc_out2, y_onehot)

    # --- torch ---
    weights1 = fc1.weights.get_data()
    bias1 = fc1.bias.get_data()
    weights2 = fc2.weights.get_data()
    bias2 = fc2.bias.get_data()

    torch_fc = nn.Linear(8, 10)
    torch_fc2 = nn.Linear(10, 12)
    torch_fc.weight.data.copy_(torch.Tensor(weights1.T))
    torch_fc.bias.data.copy_(torch.Tensor(bias1))
    torch_fc2.weight.data.copy_(torch.Tensor(weights2.T))
    torch_fc2.bias.data.copy_(torch.Tensor(bias2))
    torch_relu = nn.ReLU()

    torch_square_func = nn.CrossEntropyLoss()
    torch_x = torch.Tensor(x)
    torch_x.requires_grad = True
    torch_fc_out = torch_fc(torch_x)
    torch_fc_out1 = torch_relu(torch_fc_out)
    torch_fc_out2 = torch_fc2(torch_fc_out1)
    torch_sqaure_loss = torch_square_func(torch_fc_out2, torch.LongTensor(y))

    print("Value:\ntorch:{}, mini:{}, delta:{}".format(
        torch_sqaure_loss.item(), sqaure_loss,
        (torch_sqaure_loss.item() - sqaure_loss)))

    # --- my grad ---
    grad_x = ce_func.backward()
    grad_x = softmax.backward(grad_x)
    grad_fc2 = fc2.backward(grad_x)
    grad_w2 = fc2.weights.get_grad()
    grad_b2 = fc2.bias.get_grad()

    grad_x = relu1.backward(grad_fc2)
    grad_x = fc1.backward(grad_x)
    grad_w1 = fc1.weights.get_grad()
    grad_b1 = fc1.bias.get_grad()

    # --- torch grad ---
    torch_sqaure_loss.backward()
    torch_grad_x = torch_x.grad.data.numpy()
    torch_grad_w1 = torch_fc.weight.grad.data.numpy()
    torch_grad_b1 = torch_fc.bias.grad.data.numpy()
    torch_grad_w2 = torch_fc2.weight.grad.data.numpy()
    torch_grad_b2 = torch_fc2.bias.grad.data.numpy()
    print("--grad x ---")
    print(grad_x - torch_grad_x)

    print("--grad w1 ---")
    print(grad_w1 - torch_grad_w1.T)

    print("--grad b1 ---")
    print(grad_b1 - torch_grad_b1)

    print("--grad w2 ---")
    print(grad_w2 - torch_grad_w2.T)

    print("--grad b2 ---")
    print(grad_b2 - torch_grad_b2)
示例#7
0
    op = wrap_name_default(op_name)(op)
    op.__doc__ = type(act).__doc__
    globals()[op_name] = op
    __all__.append(op_name)


__register_unary_math_op__('exp', act.Exp())
__register_unary_math_op__('log', act.Log())
__register_unary_math_op__('abs', act.Abs())
__register_unary_math_op__('sigmoid', act.Sigmoid())
__register_unary_math_op__('tanh', act.Tanh())
__register_unary_math_op__('square', act.Square())
__register_unary_math_op__('relu', act.Relu())
__register_unary_math_op__('sqrt', act.Sqrt())
__register_unary_math_op__('reciprocal', act.Reciprocal())
__register_unary_math_op__('softmax', act.Softmax())


def __add__(layeroutput, other):
    if is_compatible_with(other, float):
        return layer.slope_intercept(input=layeroutput, intercept=other)
    if not isinstance(other, Layer):
        raise TypeError("Layer can only be added with"
                        " another Layer or a number")
    if layeroutput.size == other.size:
        return layer.mixed(input=[
            layer.identity_projection(input=layeroutput),
            layer.identity_projection(input=other)
        ])
    if other.size != 1 and layeroutput.size != 1:
        raise TypeError("Two Layer can be added only if they have equal size"