示例#1
0
    def test_theano_vs_by_hand_outputs(self):
        """
        compare theano and by hand network evaluations
        """

        EPSILON = 1E-7

        np.random.seed(9124)

        x = np.zeros((self.l, np.max([self.model.max_n, self.model.max_m])))
        x[:, :self.ns[0]] = np.random.rand(self.l, self.ns[0])

        test_val = x[:, :self.ns[0]]
        model_val = self.model.network(x)

        for i in range(self.n_layers):

            lstm = T_lstm(self.ns[i], self.ms[i], np.zeros(self.ms[i]),
                          np.zeros(self.ms[i]), logistic(self.ms[i]),
                          hyptan(self.ms[i]), identity(self.ms[i]))
            lstm.W = self.model.Ws.get_value()[i, :4 * self.ms[i], :self.ns[i]]
            lstm.U = self.model.Us.get_value()[i, :4 * self.ms[i], :self.ms[i]]
            lstm.b = self.model.bs.get_value()[i, :4 * self.ms[i]]

            test_val = lstm(test_val)

            self.assertLess(
                np.max(np.fabs(test_val - model_val[i, :, :self.ms[i]])),
                EPSILON)
示例#2
0
    def test_uni_vs_multi_t_lstm(self):
        """
        compare evaluation and differentiate of univatiate and 
        multivarate traditional neurons 
        """

        EPSILON = 1E-17

        k = 100

        lstm = T_lstm(1,
                      1,
                      np.zeros(1),
                      np.zeros(1),
                      logistic(1),
                      hyptan(1),
                      identity(1),
                      seed=0)
        U_lstm = Univariat_T_lstm(0.,
                                  0.,
                                  logistic(1),
                                  hyptan(1),
                                  identity(1),
                                  seed=0)

        lstm.W[:, 0] = U_lstm.W
        lstm.U[:, 0] = U_lstm.U
        lstm.b = U_lstm.b.copy()

        xs = np.random.rand(k)
        ys = np.random.rand(k)

        v = lstm(xs.reshape(k, 1)).flatten() - U_lstm(xs)

        self.assertLess(np.sqrt(v.dot(v)), EPSILON)

        U_grad = U_lstm.ss_grad(xs, ys)
        grad = lstm.ss_grad(xs.reshape(k, 1), ys.reshape(k, 1))

        v = U_grad - grad

        self.assertLess(np.sqrt(v.dot(v)), EPSILON)
示例#3
0
    def test_grad_loss(self):
        """
        compare the gradient computations of the by hand and theano models
        """

        TOL = 1E-5

        start = time.clock()
        self.one_layer_model.compile_grad_loss()
        test_lstm.one_layer_grad_loss_compile_time = time.clock() - start

        lstm_bh = T_lstm(self.nn, self.mm, np.zeros(self.mm),
                         np.zeros(self.mm), logistic(self.mm), hyptan(self.mm),
                         identity(self.mm))
        lstm_bh.W = self.one_layer_model.Ws.get_value()[0, :4 *
                                                        self.mm, :self.nn]
        lstm_bh.U = self.one_layer_model.Us.get_value()[0, :4 *
                                                        self.mm, :self.mm]
        lstm_bh.b = self.one_layer_model.bs.get_value()[0, :4 * self.mm]

        x = np.random.rand(self.l, max([self.nn, self.mm]))
        y = np.random.rand(self.l, self.mm)

        # scale on the by hand model doesn't match that on the theano model
        grad = lstm_bh.ss_grad(x[:, :self.nn], y) * 2. / float(self.l)

        dW, dU, db = self.one_layer_model.grad_loss(np.array([x]),
                                                    np.array([y]))

        j = 0
        mm = self.mm
        nn = self.nn
        for i in range(4):

            i_mm = i * mm

            val = np.max(
                np.fabs(grad[j:j + mm * nn] -
                        dW[0, i_mm:i_mm + mm, :nn].flatten()))
            self.assertLess(val, TOL)

            j += mm * nn
            val = np.max(
                np.fabs(grad[j:j + mm * mm] -
                        dU[0, i_mm:i_mm + mm, :mm].flatten()))
            self.assertLess(val, TOL)

            j += mm * mm
            val = np.max(
                np.fabs(grad[j:j + mm] - db[0, i_mm:i_mm + mm, ].flatten()))
            self.assertLess(val, TOL)

            j += mm
示例#4
0
    def linear_eval(self, hole_cards, community_cards, pot_amount, self_raises,
                    opp_raises):
        #print("linear", hole_cards, community_cards, pot_amount, self_raises, opp_raises)
        # Payout as a function of hole value and pot amount
        hand_str = self.evaluateHand(hole_cards, community_cards)
        payout_o = self.payout_w * (hand_str) * (pot_amount / MAX_POT_AMOUNT)
        turn_o = self.STREET_DICT[self.current_street]
        history_o = (self.self_raise_w * self_raises / 4) + (self.opp_raise_w *
                                                             opp_raises / 4)
        output = payout_o + turn_o + history_o + self.overall_bias

        # Activation bounds [-1, 1]
        return activation_functions.logistic(0, 2, 4, -1)(output)
示例#5
0
    def test_multivariate_t_lstm_num_vs_analytic(self):
        """
        compare numerical and analytic derivatives of the multivariate
        traditional lstm neuron
        """

        EPSILON = 1E-3

        np.random.seed(0)

        k = 50
        n = 20
        m = 10

        xs = np.random.rand(k, n)
        ys = np.random.rand(k, m)

        lstm = T_lstm(n,
                      m,
                      np.zeros(m),
                      np.zeros(m),
                      logistic(m),
                      hyptan(m),
                      identity(m),
                      seed=0)

        grad = lstm.ss_grad(xs, ys)

        grad_i = 0
        for i in range(3):
            for flag, sz in [['W', n * m], ['U', m * m], ['b', m]]:

                for j in range(sz):

                    WW = None
                    if flag == 'W':
                        WW = lstm.W
                        coord = (i * m + int(j / n), j % n)
                    elif flag == 'U':
                        WW = lstm.U
                        coord = (i * m + int(j / m), j % m)
                    else:
                        WW = lstm.b
                        coord = i * m + j

                    num_der = lstm.ss_numerical_derivative(
                        WW[coord], 1E-7, xs, ys, flag, coord)

                    self.assertLess(np.fabs(num_der - grad[grad_i]), EPSILON)

                    grad_i += 1
示例#6
0
    def initWeights(self, data):
        # The higher these value, the more conservative the play
        self.raise_threshold = activation_functions.logistic(0, 1, 4, 0)(data[0])
        self.call_threshold = activation_functions.logistic(0, 1, 4, 0)(data[1])

        # Multipliers
        self.card_weight = activation_functions.logistic(0, 2, 4, -1)(data[2])
        self.card_bias = activation_functions.logistic(0, 2, 4, -1)(data[3])

        # Flat biases
        self.pot_weight = activation_functions.logistic(0, 2, 4, -1)(data[4])
        self.pot_bias = activation_functions.logistic(0, 2, 4, -1)(data[5])
        return self
示例#7
0
    def test_univariate_t_lstm(self):
        """
        compare numerical and analytic derivatives of the univariate
        traditional lstm neuron
        """

        EPSILON = 1E-3

        np.random.seed(0)

        k = 100

        xs = np.random.rand(k)
        ys = np.random.rand(k)

        lstm = Univariat_T_lstm(0.,
                                0.,
                                logistic(1),
                                hyptan(1),
                                identity(1),
                                seed=0)

        grad = lstm.ss_grad(xs, ys)

        grad_i = 0
        for i in range(3):
            for flag in ['W', 'U', 'b']:

                WW = None
                if flag == 'W':
                    WW = lstm.W
                elif flag == 'U':
                    WW = lstm.U
                else:
                    WW = lstm.b

                num_der = lstm.ss_numerical_derivative(WW[i], 1E-7, xs, ys,
                                                       flag, i)

                self.assertLess(np.fabs(num_der - grad[grad_i]), EPSILON)

                grad_i += 1
示例#8
0
    def test_multivariate_t_lstm_full_derivative(self):
        """
        compare analytic_derivative result to full derivative result
        """

        EPSILON = 1E-12

        np.random.seed(0)

        k = 100
        n = 20
        m = 18

        xs = np.random.rand(k, n)
        ys = np.random.rand(k, m)

        lstm = T_lstm(n,
                      m,
                      np.zeros(m),
                      np.zeros(m),
                      logistic(m),
                      hyptan(m),
                      identity(m),
                      seed=0)

        # gradient of sum of squares loss
        grad = lstm.ss_grad(xs, ys)

        # full derivative tensor
        D = lstm.full_derivative(xs)

        # gradient by multiplication by full derivative tensor
        fd_grad = np.einsum('ij,ij...', (lstm(xs) - ys), D)

        # check the results

        v = grad - fd_grad

        self.assertLess(np.sqrt(v.dot(v)), EPSILON)