示例#1
0
def test_nan ():
	import cPickle as pickle
	import os, os.path as osp

	with open(osp.join(os.getenv('HOME'), 'Research/Data/ActiveSearch/ben/forumthreadsSparseMatrix.pkl'),'r') as fl:
		X = pickle.load(fl)
		X = X.T

	# import IPython 
	# IPython.embed()
	X = X[np.squeeze(np.array(np.nonzero(X.sum(axis=1))[0])),:]
	X = X[:,np.squeeze(np.array(np.nonzero(X.sum(axis=0))[1]))]

	X = X[np.squeeze(np.array(np.nonzero(X.sum(axis=1))[0])),:]
	X = X[:,np.squeeze(np.array(np.nonzero(X.sum(axis=0))[1]))]
	print X.shape
	r,n = X.shape

	nt = int(0.05*n)
	num_eval = 50
	Y = np.array([1]*nt + [0]*(n-nt), dtype=int)
	nr.shuffle(Y)

	pi = sum(Y)/len(Y)
	init_pt = 537

	# import IPython 
	# IPython.embed()

	# A = np.array((X.T.dot(X)).todense())
	t1 = time.time()

	verbose = True
	prms = ASI.Parameters(pi=pi,sparse=True, verbose=verbose)	
	kAS = ASI.kernelAS(prms)
	kAS.initialize(X)


	init_lbls = {init_pt:1}

	kAS.firstMessage(init_pt)
	# fs2 = [kAS.f]

	import IPython
	IPython.embed()

	for i in range(num_eval):
		idx1 = kAS.getNextMessage()
		kAS.setLabelCurrent(Y[idx1])
		init_lbls[idx1] = Y[idx1]
		import IPython
		IPython.embed()
示例#2
0
def test_CC ():

	nac = np.allclose

	n = 1000
	r = 100
	nt = 200
	rcross = 0
	X,Y = createFakeData3(n, r, nt, rcross)

	num_eval = 50
	pi = sum(Y)/len(Y)
	init_pt = 5

	# import IPython 
	# IPython.embed()

	A = X.T.dot(X)
	t1 = time.time()

	verbose = True
	prms = ASI.Parameters(pi=pi,sparse=False, verbose=verbose)	
	kAS = ASI.kernelAS(prms)
	kAS.initialize(X)
	
	sAS = ASI.shariAS(prms)
	sAS.initialize(A)
	#sAS2 = ASI.naiveShariAS(prms)

	kAS.firstMessage(init_pt)
	sAS.firstMessage(init_pt)
	# fs2 = [kAS.f]

	for i in range(num_eval):
		idx1 = kAS.getNextMessage()
		kAS.setLabelCurrent(Y[idx1])
		# init_lbls[idx1] = Y[idx1]
		idx2 = sAS.getNextMessage()
		sAS.setLabelCurrent(Y[idx2])

		print('NEXT')
		print idx1==idx2
		print nac(kAS.f, sAS.f)
		# fs2.append(kAS.f)
		# fs3.append(sAS.f)

	import IPython 
	IPython.embed()
示例#3
0
def test_interface ():
	verbose = False
	#ts_data = ef.load_timestamps (tsfile)
	Xfull = load_sparse_csr('Xfull1.npz')

	r,n = Xfull.shape

	nt = int(0.05*n)
	num_eval = 1000
	# num_eval = nt*2
	Y = np.array([1]*nt + [0]*(n-nt), dtype=int)

	pi = sum(Y)/len(Y)
	init_pt = 100

	t1 = time.time()

	prms = ASI.Parameters(pi=pi,sparse=True, verbose=verbose)	
	kAS = ASI.kernelAS(prms)
	kAS.initialize(Xfull)
	kAS.firstMessage(init_pt)
	fs2 = [kAS.f]	

	for i in range(num_eval):
		idx = kAS.getNextMessage()
		kAS.setLabelCurrent(Y[idx])
		fs2.append(kAS.f)

	t2 = time.time()

	f1,h1,s1,fs1,dtinv1 = AS.kernel_AS (Xfull, Y, pi=pi, num_eval=num_eval, init_pt=init_pt, verbose=verbose,all_fs=True,tinv=True,sparse=True)

	t3 = time.time()

	checks = [np.allclose(fs1[i],fs2[i]) for i in range(len(fs1))]

	import IPython
	IPython.embed()
示例#4
0
  X, Y = change_prev(X0, Y0, prev)

act_prev = Y.mean()

# --
# Seed labels

init_pt = np.random.choice(np.where(Y)[0], n_init, replace=False)
init_labels = {p:1 for p in init_pt}

# --
# Initialize search 

vsimp = SimpleLAS(X, init_labels=init_labels, pi=act_prev, eta=0.5, alpha=0.1)

params = ASI.Parameters(pi=act_prev, sparse=False, eta=0.5, alpha=0.1)
ref = ASI.linearizedAS(params)
ref.initialize(X, init_labels=init_labels)

assert((vsimp.f == ref.f).mean() == 1)

# --
# Compare performance

simp_idx = vsimp.next_message
vsimp.setLabel(simp_idx, Y[simp_idx])

ref_idx = ref.getNextMessage()
ref.setLabelCurrent(Y[ref_idx])

assert(ref_idx == simp_idx)
示例#5
0
def test_warm_start ():

	verbose = True
	nac = np.allclose
	#ts_data = ef.load_timestamps (tsfile)
	Xfull = load_sparse_csr('Xfull1.npz')
	# print Xfull.shape
	# Xfull = Xfull[np.squeeze(np.asarray(np.nonzero(Xfull.sum(axis=1))[0])),:]
	# Xfull = Xfull[:,np.squeeze(np.asarray(np.nonzero(Xfull.sum(axis=0))[1]))]
	# # r,n = Xfull.shape

	# print Xfull.shape
	# Xfull = Xfull[np.squeeze(np.asarray(np.nonzero(Xfull.sum(axis=1))[0])),:]
	# Xfull = Xfull[:,np.squeeze(np.asarray(np.nonzero(Xfull.sum(axis=0))[1]))]

	# getting rid of features which are zero for all these elements
	n = 300
	r = 600
	X = Xfull[:,:n]

	X = X[np.squeeze(np.array(np.nonzero(X.sum(axis=1))[0])),:]
	X = X[:,np.squeeze(np.array(np.nonzero(X.sum(axis=0))[1]))]

	X = X[:r,:]
	X = X[np.squeeze(np.array(np.nonzero(X.sum(axis=1))[0])),:]
	X = X[:,np.squeeze(np.array(np.nonzero(X.sum(axis=0))[1]))]
	print X.shape
	#X = np.load('X11.npy')
	r,n = X.shape
	
	nt = int(0.05*n)
	num_eval = 50
	Y = np.array([1]*nt + [0]*(n-nt), dtype=int)
	nr.shuffle(Y)

	pi = sum(Y)/len(Y)
	init_pt = 5

	# import IPython 
	# IPython.embed()

	A = np.array((X.T.dot(X)).todense())
	t1 = time.time()

	prms = ASI.Parameters(pi=pi,sparse=True, verbose=verbose)	
	kAS = ASI.kernelAS(prms)
	kAS.initialize(X)
	
	kAS2 = ASI.kernelAS(prms)
	sAS = ASI.shariAS(prms)
	sAS2 = ASI.naiveShariAS(prms)

	# import IPython
	# IPython.embed()

	init_lbls = {init_pt:1}

	kAS.firstMessage(init_pt)
	fs2 = [kAS.f]

	for i in range(num_eval):
		idx1 = kAS.getNextMessage()
		kAS.setLabelCurrent(Y[idx1])
		init_lbls[idx1] = Y[idx1]
		# sAS.setLabelCurrent(Y[idx2])
		# fs2.append(kAS.f)
		# fs3.append(sAS.f)

	print("Batch initializing:")
	print("Kernel AS:")
	kAS2.initialize(X, init_lbls)
	print("Shari AS:")
	sAS.initialize(A, init_lbls)
	print("Naive Shari AS:")
	sAS2.initialize(A, init_lbls)


	import IPython
	IPython.embed()
示例#6
0
def test_interface3 ():

	verbose = True
	nac = np.allclose
	#ts_data = ef.load_timestamps (tsfile)
	Xfull = load_sparse_csr('Xfull1.npz')
	print Xfull.shape
	Xfull = Xfull[np.squeeze(np.asarray(np.nonzero(Xfull.sum(axis=1))[0])),:]
	Xfull = Xfull[:,np.squeeze(np.asarray(np.nonzero(Xfull.sum(axis=0))[1]))]
	# r,n = Xfull.shape

	print Xfull.shape
	Xfull = Xfull[np.squeeze(np.asarray(np.nonzero(Xfull.sum(axis=1))[0])),:]
	Xfull = Xfull[:,np.squeeze(np.asarray(np.nonzero(Xfull.sum(axis=0))[1]))]

	# getting rid of features which are zero for all these elements
	# n = 300
	# r = 600
	X = Xfull#[:,:n]

	# X = X[np.squeeze(np.array(np.nonzero(X.sum(axis=1))[0])),:]
	# X = X[:,np.squeeze(np.array(np.nonzero(X.sum(axis=0))[1]))]

	# X = X[:r,:]
	# X = X[np.squeeze(np.array(np.nonzero(X.sum(axis=1))[0])),:]
	# X = X[:,np.squeeze(np.array(np.nonzero(X.sum(axis=0))[1]))]
	# print X.shape
	# #X = np.load('X11.npy')
	r,n = X.shape
	
	nt = int(0.05*n)
	num_eval = 50
	Y = np.array([1]*nt + [0]*(n-nt), dtype=int)

	pi = sum(Y)/len(Y)
	init_pt = 5

	# import IPython 
	# IPython.embed()

	A = np.array((X.T.dot(X)).todense())
	t1 = time.time()

	prms = ASI.Parameters(pi=pi,sparse=True, verbose=verbose)	
	kAS = ASI.kernelAS(prms)
	kAS.initialize(X)
	sAS = ASI.shariAS(prms)
	sAS.initialize(A)

	# ofk = kAS.f
	# ofs = sAS.f

	# import IPython
	# IPython.embed()


	kAS.firstMessage(init_pt)
	fs2 = [kAS.f]
	sAS.firstMessage(init_pt)
	fs3 = [sAS.f]

	# #
	# lbl = 1
	# idx = 5
	
	# B = np.ones(n)/(1+prms.w0)
	# D = A.sum(axis=1)
	# BDinv = np.diag(np.squeeze(B*1./D))
	# IA = np.eye(n) - BDinv.dot(A)
	# IAi = np.matrix(nlg.inv(IA))
	# IAk = nlg.inv(np.eye(n) + kAS.BDinv.dot(X.T.dot(nlg.inv(np.eye(r) - X.dot(kAS.BDinv.dot(X.T))))).dot(X.todense()))
	# IAki = nlg.inv(IAk)
	
	# t = (1+prms.w0)*(1-prms.eta)
	# e = np.zeros((n,1))
	# e[idx] = 1
	# IA2 = IA + (1-t)*e.dot(e.T).dot(BDinv.dot(A))
	# ai = (1./D)[idx]/(1+ prms.w0)*A[idx,:]
	# Ad = (1-t)*IAi[:,idx].dot(ai.dot(IAi))/(1 + (1-t)*ai.dot(IAi[:,idx]))
	# IA2i = IAi - Ad
	#


	# import IPython
	# IPython.embed()

	for i in range(num_eval):
		idx1 = kAS.getNextMessage()
		idx2 = sAS.getNextMessage()
		print('NEXT')
		print idx1==idx2
		print nac(kAS.f, sAS.f)
		# import IPython
		# IPython.embed()

		kAS.setLabelCurrent(Y[idx1])
		sAS.setLabelCurrent(Y[idx2])
		fs2.append(kAS.f)
		fs3.append(sAS.f)

	t2 = time.time()

	# f1,h1,s1,fs1,dtinv1 = AS.kernel_AS (Xfull, Y, pi=pi, num_eval=num_eval, init_pt=init_pt, verbose=verbose,all_fs=True,tinv=True,sparse=True)

	t3 = time.time()

	# checks = [np.allclose(fs1[i],fs2[i]) for i in range(len(fs1))]

	import IPython
	IPython.embed()
示例#7
0
def test_interface2 ():
	verbose = True
	nac = np.allclose
	#ts_data = ef.load_timestamps (tsfile)
	Xfull = load_sparse_csr('Xfull1.npz')
	print Xfull.shape
	# Xfull = Xfull[np.squeeze(np.asarray(np.nonzero(Xfull.sum(axis=1))[0])),:]
	# Xfull = Xfull[:,np.squeeze(np.asarray(np.nonzero(Xfull.sum(axis=0))[1]))]
	# r,n = Xfull.shape

	# print Xfull.shape
	# Xfull = Xfull[np.squeeze(np.asarray(np.nonzero(Xfull.sum(axis=1))[0])),:]
	# Xfull = Xfull[:,np.squeeze(np.asarray(np.nonzero(Xfull.sum(axis=0))[1]))]

	# getting rid of features which are zero for all these elements
	n = 300
	r = 600
	X = Xfull[:,:n]

	X = X[np.squeeze(np.array(np.nonzero(X.sum(axis=1))[0])),:]
	X = X[:,np.squeeze(np.array(np.nonzero(X.sum(axis=0))[1]))]

	X = X[:r,:]
	X = X[np.squeeze(np.array(np.nonzero(X.sum(axis=1))[0])),:]
	X = X[:,np.squeeze(np.array(np.nonzero(X.sum(axis=0))[1]))]
	print X.shape
	#X = np.load('X11.npy')
	r,n = X.shape
	
	nt = int(0.05*n)
	num_eval = 50
	Y = np.array([1]*nt + [0]*(n-nt), dtype=int)

	pi = sum(Y)/len(Y)
	init_pt = 5

	# import IPython 
	# IPython.embed()

	A = np.array((X.T.dot(X)).todense())
	t1 = time.time()

	prms = ASI.Parameters(pi=pi,sparse=True, verbose=verbose)	
	kAS = ASI.kernelAS(prms)
	kAS.initialize(X)
	sAS = ASI.naiveShariAS(prms)
	sAS.initialize(A)
	
	import IPython
	IPython.embed()

	kAS.firstMessage(init_pt)
	fs2 = [kAS.f]
	sAS.firstMessage(init_pt)
	fs3 = [sAS.f]

	import IPython
	IPython.embed()

	for i in range(num_eval):
		idx1 = kAS.getNextMessage()
		idx2 = sAS.getNextMessage()
		print('NEXT')
		print idx1==idx2
		print nac(kAS.f, sAS.f)
		# import IPython
		# IPython.embed()

		kAS.setLabelCurrent(Y[idx1])
		sAS.setLabelCurrent(Y[idx2])
		fs2.append(kAS.f)
		fs3.append(sAS.f)

	t2 = time.time()

	# f1,h1,s1,fs1,dtinv1 = AS.kernel_AS (Xfull, Y, pi=pi, num_eval=num_eval, init_pt=init_pt, verbose=verbose,all_fs=True,tinv=True,sparse=True)

	t3 = time.time()

	# checks = [np.allclose(fs1[i],fs2[i]) for i in range(len(fs1))]

	import IPython
	IPython.embed()