"regression_" + name, case_name ) n_samples_list = regression_history_all[0][0].keys() error_samples = sorted(n_samples_list) error_avgs = np.zeros(len(n_samples_list)) error_min = np.zeros(len(n_samples_list)) error_max = np.zeros(len(n_samples_list)) error_repetitions = np.zeros(len(n_samples_list)) for i, n_samples in enumerate(error_samples): error_list = [] for regression_history, features_range in regression_history_all: error = calculate_error( X_true, y_true, regression_history[n_samples], features_range, error_measure=mean_relative_error, ) error_list.append(error) error_avgs[i] = np.average(error_list) error_min[i], error_max[i] = sp.stats.t.interval( 0.95, len(error_list) - 1, loc=np.mean(error_list), scale=sp.stats.sem(error_list), ) error_repetitions[i] = len(error_list) plt.plot(error_samples, error_avgs * 100, label="\\small " + label) plt.fill_between(error_samples, error_min * 100, error_max * 100, alpha=0.5)
from active_learning_cfd.error_measures import calculate_error reference_filename = "reference_solution.csv" reference_solution = np.genfromtxt(reference_filename, delimiter=",") X_true = reference_solution[:, 0:-1] y_true = reference_solution[:, -1] strategy_list = ( "gp_rbf_std", "gp_52_std", "lin_greedyio", "rfr_greedyio", "svr_greedyio", "nn_greedyio", ) plt.figure() for name in strategy_list: regression_history = load_regression_history("regression_" + name, "algebraic") error_list = np.array( [[n_samples, calculate_error(X_true, y_true, regressor)] for n_samples, regressor in regression_history]) plt.plot(error_list[:, 0], error_list[:, 1], label=name) plt.legend() plt.show()