namemap = lesionordermap(info) info = info.query(nonjumpers) cract = pd.read_hdf(lesionshamcache, crossingactivity_random_key) cr = pd.read_hdf(lesionshamcache, crossings_key).query(nonjumpers) cract.reset_index('time', inplace=True) # Select data bias = 2 group = list(names(info)) random = '(session == 13 and trial > 20) or (14 <= session < 17)' cr = cr.query(random) for name in group: selection = str.format("subject in {0}", [name]) scr = cr.query(selection) stablebias, unstablebias = posturebias(scr, n=bias) stablebias = getballistictrials(stablebias) unstablebias = getballistictrials(unstablebias) if len(stablebias) == 0 or len(unstablebias) == 0: continue # Select data stablebias = stablebias.rename(columns={'index': 'crossing'}) unstablebias = unstablebias.rename(columns={'index': 'crossing'}) stablebias.set_index('crossing', append=True, inplace=True) unstablebias.set_index('crossing', append=True, inplace=True) scract = cract.join(stablebias, how='inner', rsuffix='R') ucract = cract.join(unstablebias, how='inner', rsuffix='R') scract.xhead = flipleftwards(scract.xhead, scract.side) ucract.xhead = flipleftwards(ucract.xhead, ucract.side) sb_S = scract.query('stepstate3') sb_U = scract.query('not stepstate3')
cract.reset_index(['subject','session','crossing'],inplace=True) info = pd.read_hdf(lesionshamcache, info_key).query(nonjumpers) info = info.query("subject != 'JPAK_20'") # Select data group = list(names(info)) controls = list(names(control(info))) lesions = list(names(lesion(info))) matched = list(cagemates(lesion(info))) small = list(names(smalllesion(info))) selection = str.format("subject in {0}",group) random = '(session == 13 and trial > 20) or (14 <= session < 17)' steps = steps.query(random).query(selection) cr = cr.query(random).query(selection) steps = joinstepactivity(steps,cr,cract) steps = getballistictrials(steps) for i in range(21,22): offact = crossingoffset(cract,steps,i) offact.set_index(['subject','session'],inplace=True) normalizeposition(offact,inplace=True) stablebias,unstablebias = posturebias(offact,n=2) fig, (ax1,ax2) = plt.subplots(1,2) colors = ['b','cyan','orange','r'] grouplabels = ['controls','small\nlesions','lesions','matched\ncontrols'] conditions = [offact.query('stepstate3'), offact.query('not stepstate3')] conditioncomparison('yhead', [controls,small,lesions,matched], conditions,colors=[colors[0],colors[-1]],
from datapath import lesionshamcache, crossings_key from datapath import jumpers # Load data stable = '(3 <= session < 5)' unstable = '(9 <= session < 11)' restable = '(11 <= session < 13)' removed = "subject not in ['JPAK_20']" selected = str.format("({0} or {1} or {2}) and {3} and trial > 0", stable, unstable, restable, removed) nonjumpers = str.format("subject not in {0}", jumpers) jumpers = str.format("subject in {0}", jumpers) info = pd.read_hdf(lesionshamcache, info_key) namemap = lesionordermap(info) cr = pd.read_hdf(lesionshamcache, crossings_key) cr = getballistictrials(cr) # Select data column = 'entryspeed' info['lesionvolume'] = lesionvolume(info) cr = cr.query(selected).join(info) cr.protocol[cr.eval(stable)] = 'stable' cr.protocol[cr.eval(unstable)] = 'unstable' cr.protocol[cr.eval(restable)] = 'restable' sm = skipmeasure(cr, column) # Custom-sort by protocol protocolorder = {'stable': 0, 'unstable': 1, 'restable': 2} sm['rank'] = sm['protocol'].map(protocolorder) sm.sort(columns='rank', inplace=True) sm.drop(labels='rank', axis=1)
from datapath import crossingactivity_stable_key from datapath import crossingactivity_unstable_key from datapath import crossingactivity_restable_key from datapath import jumpers # Load data stable = '(3 <= session < 5)' unstable = '(9 <= session < 11)' restable = '(11 <= session < 13)' removed = "subject not in ['JPAK_20']" selected = str.format("({0} or {1} or {2}) and {3} and trial > 0", stable, unstable, restable, removed) nonjumpers = str.format("subject not in {0}", jumpers) jumpers = str.format("subject in {0}", jumpers) cr = pd.read_hdf(lesionshamcache, crossings_key) cr = getballistictrials(cr).query(selected) # Plot data f, (sx, ux, rx) = plt.subplots(1, 3) cract = pd.read_hdf(lesionshamcache, crossingactivity_stable_key) averagetrajectory(cract, cr.query(stable).query(nonjumpers), color='b', ax=sx) averagetrajectory(cract, cr.query(stable).query(jumpers), color='r', ax=sx) proxylegend(['b', 'r'], ['nonjumper', 'jumper'], ax=sx) sx.set_title(str.format('stable (n = {0} trials)', len(cr.query(stable)))) sx.set_ylabel('y (cm)') sx.set_ylim(0, 6) cract = pd.read_hdf(lesionshamcache, crossingactivity_unstable_key) averagetrajectory(cract, cr.query(unstable).query(nonjumpers), color='b',