示例#1
0
# Get arrays from array

splits = dm.get_splits(season=season,
                       patch=patch,
                       arrays=dm.array_freqs[args.array],
                       srcfree=True)
ivars = dm.get_splits_ivar(season=season,
                           patch=patch,
                           arrays=dm.array_freqs[args.array])
noise.plot(pout + "_splits", splits)
noise.plot(pout + "_ivars", ivars)

modlmap = splits.modlmap()
n2d_flat = noise.get_n2d_data(splits,
                              ivars,
                              mask,
                              coadd_estimator=coadd,
                              flattened=True,
                              plot_fname=pout + "_n2d_flat")
del splits

radial_pairs = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (0, 3), (3, 0)]
if smooth:
    n2d_flat_smoothed = noise.smooth_ps(
        n2d_flat.copy(),
        dfact=dfact,
        radial_pairs=radial_pairs,
        plot_fname=pout + "_n2d_flat_smoothed",
        radial_fit_annulus=args.radial_fit_annulus)
else:
    n2d_flat_smoothed = n2d_flat.copy()
if args.no_off: n2d_flat_smoothed = noise.null_off_diagonals(n2d_flat_smoothed)
示例#2
0
splits = enmap.enmap([dm.get_splits(q) for q in qid])
nsplits = dm.ainfo(args.qid, 'nsplits')

# Get inverse variance map
ivars = enmap.enmap([dm.get_ivars(q) for q in qid])

modlmap = splits.modlmap()

if calc_covsqrt:

    flatstring = "un" if args.do_only_filter_noise else ""

    n2d_xflat = noise.get_n2d_data(
        splits,
        ivars,
        mask,
        coadd_estimator=coadd,
        flattened=not (args.do_only_filter_noise),
        plot_fname=pout + "_n2d_%sflat" % flatstring if args.debug else None,
        dtype=dm.dtype)

    # output 1D spectrum
    if args.debug:
        print('plotting 1D spectrum of n2d_xflat')
        plots.plot_1dspec(n2d_xflat, modlmap, pout, lmin=500)

    ncomps = n2d_xflat.shape[0]
    if ncomps == 1:
        npol = 1
    else:
        npol = 3
    if args.verbose:
示例#3
0
mask = sints.get_act_mr3_crosslinked_mask(region)

dm = sints.models['act_mr3'](region=mask, calibrated=True)
splits = dm.get_splits(season=season,
                       patch=patch,
                       arrays=dm.array_freqs[array],
                       srcfree=True)
ivars = dm.get_splits_ivar(season=season,
                           patch=patch,
                           arrays=dm.array_freqs[array])

npower = noise.get_n2d_data(splits,
                            ivars,
                            mask,
                            coadd_estimator=True,
                            flattened=False,
                            plot_fname=None,
                            dtype=dm.dtype)

ndown, nfitted, nparams = covtools.noise_average(npower[0, 0],
                                                 dfact=(16, 16),
                                                 lmin=300,
                                                 lmax=8000,
                                                 wnoise_annulus=500,
                                                 bin_annulus=20,
                                                 lknee_guess=3000,
                                                 alpha_guess=-4,
                                                 method="fft",
                                                 radial_fit=True)