return image # New: replace random_crop with center crop def center_crop(image, crop_size): image_shape = image.get_shape().as_list() offset_length = floor(float(crop_size / 2)) x_start = floor(image_shape[2] / 2 - offset_length) y_start = floor(image_shape[1] / 2 - offset_length) image = image[:, x_start:x_start + crop_size, y_start:y_start + crop_size] image.set_shape((3, crop_size, crop_size)) return image if __name__ == '__main__': params = get_params(train) parser = argparse.ArgumentParser( description='AdaIN Style Transfer Training') # general parser.add_argument( '--content_dir', default=params['content_dir'], help= 'A directory with TFRecords files containing content images for training' ) parser.add_argument( '--style_dir', default=params['style_dir'], help=
otherLayers = [vgg[i] for i in otherLayerNames] if decoder_weights: with open_weights(decoder_weights) as w: decoder = build_decoder(combined_target, w, trainable=False, data_format=data_format) else: decoder = build_decoder(combined_target, None, trainable=False, data_format=data_format) # Return other layers on top of original outputs return image, content, style, target, encoder, decoder, otherLayers if __name__ == '__main__': params = get_params(style_transfer) parser = argparse.ArgumentParser(description='AdaIN Style Transfer') parser.add_argument('--content', help='File path to the content image') parser.add_argument('--content_dir', help="""Directory path to a batch of content images""") parser.add_argument('--style', help="""File path to the style image, or multiple style images separated by commas if you want to do style interpolation or spatial control""") parser.add_argument('--style_dir', help="""Directory path to a batch of style images""") parser.add_argument('--vgg_weights', default=params['vgg_weights'], help='Path to the weights of the VGG19 network') parser.add_argument('--decoder_weights', default=params['decoder_weights'], help='Path to the decoder')