def test_matching_static_vs_dynamic_graphs(): target_object = BOX train_obj_object = object_variable("obj-with-color", target_object) obj_template = Phase1SituationTemplate( "colored-obj-object", salient_object_variables=[train_obj_object]) template = all_possible(obj_template, chooser=PHASE1_CHOOSER_FACTORY(), ontology=GAILA_PHASE_1_ONTOLOGY) train_curriculum = phase1_instances("all obj situations", situations=template) perceptual_representation = only(train_curriculum.instances())[2] perception_graph = graph_without_learner( PerceptionGraph.from_frame(perceptual_representation.frames[0])) temporal_perception_graph = perception_graph.copy_with_temporal_scopes( temporal_scopes=[TemporalScope.AFTER]) perception_pattern = PerceptionGraphPattern.from_graph( perception_graph).perception_graph_pattern temporal_perception_pattern = perception_pattern.copy_with_temporal_scopes( required_temporal_scopes=[TemporalScope.AFTER]) # Test runtime error for matching static pattern against dynamic graph and vice versa with pytest.raises(RuntimeError): perception_pattern.matcher(temporal_perception_graph, match_mode=MatchMode.NON_OBJECT) with pytest.raises(RuntimeError): temporal_perception_pattern.matcher(perception_graph, match_mode=MatchMode.NON_OBJECT)
def from_graph( perception_graph: PerceptionGraph, template_variable_to_matched_object_node: Mapping[ SyntaxSemanticsVariable, ObjectSemanticNode ], ) -> "PerceptionGraphTemplate": # It is possible the perception graph has additional recognized objects # which are not aligned to surface template slots. # We assume these are not arguments of the verb and remove them from the perception # before creating a pattern. pattern_from_graph = PerceptionGraphPattern.from_graph(perception_graph) pattern_graph = pattern_from_graph.perception_graph_pattern matched_object_to_matched_predicate = ( pattern_from_graph.perception_graph_node_to_pattern_node ) template_variable_to_pattern_node: List[Any] = [] for ( template_variable, object_node, ) in template_variable_to_matched_object_node.items(): if object_node in matched_object_to_matched_predicate: template_variable_to_pattern_node.append( (template_variable, matched_object_to_matched_predicate[object_node]) ) return PerceptionGraphTemplate( graph_pattern=pattern_graph, template_variable_to_pattern_node=template_variable_to_pattern_node, )
def _enrich_post_process( perception_graph_after_matching: PerceptionGraph, immutable_new_nodes: AbstractSet[SemanticNode], ) -> Tuple[PerceptionGraph, AbstractSet[SemanticNode]]: new_nodes = [] perception_graph_after_processing = perception_graph_after_matching for candiate_object_graph in extract_candidate_objects( perception_graph_after_matching, sort_by_increasing_size=False): fake_pattern_graph = PerceptionGraphPattern.from_graph( candiate_object_graph) fake_object_semantic_node = ObjectSemanticNode( concept=FunctionalObjectConcept("unknown_object")) perception_graph_after_processing = replace_match_with_object_graph_node( matched_object_node=fake_object_semantic_node, current_perception=perception_graph_after_processing, pattern_match=PerceptionGraphPatternMatch( matched_pattern=fake_pattern_graph. perception_graph_pattern, graph_matched_against=perception_graph_after_processing, matched_sub_graph=candiate_object_graph, pattern_node_to_matched_graph_node=fake_pattern_graph. perception_graph_node_to_pattern_node, ), ).perception_graph_after_replacement new_nodes.append(fake_object_semantic_node) return ( perception_graph_after_processing, immutableset(chain(immutable_new_nodes, new_nodes)), )
def test_successfully_extending_partial_match(): """ Tests whether we can match a perception pattern against a perception graph when initializing the search from a partial match. """ target_object = BOX # Create train and test templates for the target objects train_obj_object = object_variable("obj-with-color", target_object) obj_template = Phase1SituationTemplate( "colored-obj-object", salient_object_variables=[train_obj_object]) template = all_possible(obj_template, chooser=PHASE1_CHOOSER_FACTORY(), ontology=GAILA_PHASE_1_ONTOLOGY) train_curriculum = phase1_instances("all obj situations", situations=template) perceptual_representation = only(train_curriculum.instances())[2] # Original perception graph perception = PerceptionGraph.from_frame( perceptual_representation.frames[0]) # Create a perception pattern for the whole thing # and also a perception pattern for a subset of the whole pattern whole_perception_pattern = PerceptionGraphPattern.from_graph( perception).perception_graph_pattern partial_digraph = whole_perception_pattern.copy_as_digraph() partial_digraph.remove_nodes_from([ node for node in partial_digraph.nodes if isinstance(node, IsColorNodePredicate) ]) partial_perception_pattern = PerceptionGraphPattern(partial_digraph) # get our initial match by matching the partial pattern matcher = partial_perception_pattern.matcher( perception, match_mode=MatchMode.NON_OBJECT) partial_match: PerceptionGraphPatternMatch = first( matcher.matches(use_lookahead_pruning=True)) partial_mapping = partial_match.pattern_node_to_matched_graph_node # Try to extend the partial mapping, to create a complete mapping matcher_2 = whole_perception_pattern.matcher( perception, match_mode=MatchMode.NON_OBJECT) complete_match: PerceptionGraphPatternMatch = first( matcher_2.matches(initial_partial_match=partial_mapping, use_lookahead_pruning=True), None, ) complete_mapping = complete_match.pattern_node_to_matched_graph_node assert len(complete_mapping) == len(perception.copy_as_digraph().nodes) assert len(complete_mapping) == len( whole_perception_pattern.copy_as_digraph().nodes)
def _hypothesis_from_perception( self, preprocessed_input: LanguageAlignedPerception ) -> PerceptionGraphTemplate: new_hypothesis = PerceptionGraphPattern.from_graph( preprocessed_input.perception_graph).perception_graph_pattern return PerceptionGraphTemplate( graph_pattern=new_hypothesis, template_variable_to_pattern_node=immutabledict(), )
def candidate_object_hypotheses( language_perception_semantic_alignment: LanguagePerceptionSemanticAlignment ) -> Sequence[PerceptionGraphTemplate]: """ Given a learning input, returns all possible meaning hypotheses. """ return [ PerceptionGraphTemplate( graph_pattern=PerceptionGraphPattern.from_graph( object_ ).perception_graph_pattern ) for object_ in get_objects_from_perception( language_perception_semantic_alignment.perception_semantic_alignment.perception_graph ) ]
def _hypotheses_from_perception( self, learning_state: LanguagePerceptionSemanticAlignment, bound_surface_template: SurfaceTemplateBoundToSemanticNodes, ) -> AbstractSet[PerceptionGraphTemplate]: if bound_surface_template.slot_to_semantic_node: raise RuntimeError( "Object learner should not have slot to semantic node alignments!" ) return immutableset( PerceptionGraphTemplate( graph_pattern=PerceptionGraphPattern.from_graph( candidate_object).perception_graph_pattern, template_variable_to_pattern_node=immutabledict(), ) for candidate_object in extract_candidate_objects( learning_state.perception_semantic_alignment.perception_graph))
def _enrich_post_process( self, perception_graph_after_matching: PerceptionGraph, immutable_new_nodes: AbstractSet[SemanticNode], ) -> Tuple[PerceptionGraph, AbstractSet[SemanticNode]]: object_root_nodes = immutableset( # pylint:disable=protected-access node for node in perception_graph_after_matching._graph.nodes # pylint:disable=protected-access if isinstance(node, ObjectPerception)) new_nodes = [] perception_graph_after_processing = perception_graph_after_matching for object_root_node in object_root_nodes: fake_subgraph = subgraph( # pylint:disable=protected-access perception_graph_after_matching._graph, # pylint:disable=protected-access [object_root_node], ) fake_perception_graph = PerceptionGraph( graph=fake_subgraph, dynamic=perception_graph_after_matching.dynamic) fake_pattern_graph = PerceptionGraphPattern.from_graph( fake_perception_graph) fake_object_semantic_node = ObjectSemanticNode( concept=FunctionalObjectConcept("unknown_object")) # perception_graph_after_processing = replace_match_root_with_object_semantic_node( # object_semantic_node=fake_object_semantic_node, perception_graph_after_processing = replace_match_with_object_graph_node( matched_object_node=fake_object_semantic_node, current_perception=perception_graph_after_processing, pattern_match=PerceptionGraphPatternMatch( matched_pattern=fake_pattern_graph. perception_graph_pattern, graph_matched_against=perception_graph_after_matching, matched_sub_graph=fake_perception_graph, pattern_node_to_matched_graph_node=fake_pattern_graph. perception_graph_node_to_pattern_node, ), ).perception_graph_after_replacement new_nodes.append(fake_object_semantic_node) return ( perception_graph_after_processing, immutableset(chain(immutable_new_nodes, new_nodes)), )
def test_copy_with_temporal_scope_pattern_content(): """ Tests whether copy_with_temporal_scope converts patterns to be dynamic as intended """ # We use a situation to generate the perceptual representation # for a box with color. target_object = BOX train_obj_object = object_variable("obj-with-color", target_object) obj_template = Phase1SituationTemplate( "colored-obj-object", salient_object_variables=[train_obj_object]) template = all_possible(obj_template, chooser=PHASE1_CHOOSER_FACTORY(), ontology=GAILA_PHASE_1_ONTOLOGY) train_curriculum = phase1_instances("all obj situations", situations=template) perceptual_representation = only(train_curriculum.instances())[2] perception_graph = graph_without_learner( PerceptionGraph.from_frame(perceptual_representation.frames[0])) perception_pattern = PerceptionGraphPattern.from_graph( perception_graph).perception_graph_pattern temporal_perception_graph = perception_graph.copy_with_temporal_scopes( temporal_scopes=[TemporalScope.AFTER]) temporal_perception_pattern = perception_pattern.copy_with_temporal_scopes( required_temporal_scopes=TemporalScope.AFTER) # Exception while applying to dynamic pattern with pytest.raises(RuntimeError): temporal_perception_pattern.copy_with_temporal_scopes( required_temporal_scopes=TemporalScope.AFTER) for (source, target) in perception_pattern.copy_as_digraph().edges(): assert not isinstance( perception_pattern.copy_as_digraph()[source][target]["predicate"], HoldsAtTemporalScopePredicate, ) for (source, target) in temporal_perception_pattern.copy_as_digraph().edges(): # Check type, and then the content predicate = temporal_perception_pattern.copy_as_digraph( )[source][target]["predicate"] # Test HoldsAtTemporalScope dot label, matches predicate assert isinstance(predicate.dot_label(), str) assert predicate.matches_predicate( HoldsAtTemporalScopePredicate(predicate.wrapped_edge_predicate, predicate.temporal_scopes)) assert not predicate.matches_predicate( HoldsAtTemporalScopePredicate(predicate.wrapped_edge_predicate, [TemporalScope.BEFORE])) assert isinstance(predicate, HoldsAtTemporalScopePredicate) assert (predicate.wrapped_edge_predicate == perception_pattern. copy_as_digraph()[source][target]["predicate"]) assert len(predicate.temporal_scopes) == 1 assert only(predicate.temporal_scopes) == TemporalScope.AFTER # Test normal matching behavior temporal_matcher = temporal_perception_pattern.matcher( temporal_perception_graph, match_mode=MatchMode.NON_OBJECT) first(temporal_matcher.matches(use_lookahead_pruning=True)) # Test HoldsAtTemporalScopePredicate for (source, target) in perception_graph.copy_as_digraph().edges(): label = "test edge label" edge_predicate = AnyEdgePredicate() temporal_predicate = HoldsAtTemporalScopePredicate( edge_predicate, [TemporalScope.AFTER]) temporal_edge_label = TemporallyScopedEdgeLabel( label, [TemporalScope.AFTER]) assert temporal_predicate(source, temporal_edge_label, target) # Non temporal edge exception with pytest.raises(RuntimeError): temporal_predicate(source, label, target)
def test_allowed_matches_with_bad_partial_match(): """ Tests whether PatternMarching's allowed_matches functionality works as intended when a bad partial match is specified. """ target_object = BOX train_obj_object = object_variable("obj-with-color", target_object) obj_template = Phase1SituationTemplate( "colored-obj-object", salient_object_variables=[train_obj_object]) template = all_possible(obj_template, chooser=PHASE1_CHOOSER_FACTORY(), ontology=GAILA_PHASE_1_ONTOLOGY) train_curriculum = phase1_instances("all obj situations", situations=template) perceptual_representation = only(train_curriculum.instances())[2] perception = graph_without_learner( PerceptionGraph.from_frame(perceptual_representation.frames[0])) pattern1: PerceptionGraphPattern = PerceptionGraphPattern.from_graph( perception.subgraph_by_nodes({ cast(PerceptionGraphNode, node) for node in perception._graph.nodes # pylint: disable=protected-access if getattr(node, "debug_handle", None) == "box_0" })).perception_graph_pattern pattern2: PerceptionGraphPattern = PerceptionGraphPattern.from_graph( perception.subgraph_by_nodes({ cast(PerceptionGraphNode, node) for node in perception._graph.nodes # pylint: disable=protected-access if getattr(node, "debug_handle", None) in {"box_0", "the ground"} })).perception_graph_pattern pattern1_box: AnyObjectPerception = cast( AnyObjectPerception, only(node for node in pattern1._graph # pylint: disable=protected-access if getattr(node, "debug_handle", None) == "box_0"), ) pattern2_box: AnyObjectPerception = cast( AnyObjectPerception, only(node for node in pattern2._graph # pylint: disable=protected-access if getattr(node, "debug_handle", None) == "box_0"), ) pattern2_ground: AnyObjectPerception = cast( AnyObjectPerception, only(node for node in pattern2._graph # pylint: disable=protected-access if getattr(node, "debug_handle", None) == "the ground"), ) matcher = PatternMatching( pattern=pattern1, graph_to_match_against=pattern2, matching_pattern_against_pattern=True, match_mode=MatchMode.OBJECT, allowed_matches=immutablesetmultidict([(pattern1_box, pattern2_box)]), ) with pytest.raises(RuntimeError): first( matcher.matches( initial_partial_match={pattern1_box: pattern2_ground}, use_lookahead_pruning=True, ), None, )
def test_syntactically_infeasible_partial_match(): """ Tests whether syntactic feasibility works as intended """ # We use a situation to generate the perceptual representation # for a box with color. target_object = BOX train_obj_object = object_variable("obj-with-color", target_object) obj_template = Phase1SituationTemplate( "colored-obj-object", salient_object_variables=[train_obj_object]) template = all_possible(obj_template, chooser=PHASE1_CHOOSER_FACTORY(), ontology=GAILA_PHASE_1_ONTOLOGY) train_curriculum = phase1_instances("all obj situations", situations=template) perceptual_representation = only(train_curriculum.instances())[2] # Original perception graph perception = graph_without_learner( PerceptionGraph.from_frame(perceptual_representation.frames[0])) # Create an altered perception graph we remove the color node altered_perception_digraph = perception.copy_as_digraph() nodes = [] for node in perception.copy_as_digraph().nodes: # If we find a color node, we add an extra edge to it if isinstance(node, tuple) and isinstance(node[0], RgbColorPerception): nodes.append(node) # change edge information for node in nodes: random_node = r.choice(list(altered_perception_digraph.nodes)) altered_perception_digraph.add_edge(node, random_node, label=PART_OF) random_node_2 = r.choice(list(altered_perception_digraph.nodes)) altered_perception_digraph.add_edge(random_node_2, node, label=PART_OF) altered_perception_perception_graph = PerceptionGraph( altered_perception_digraph) altered_perception_pattern = PerceptionGraphPattern.from_graph( altered_perception_perception_graph).perception_graph_pattern # Start the matching process, get a partial match first_matcher = altered_perception_pattern.matcher( altered_perception_perception_graph, match_mode=MatchMode.OBJECT) partial_match: PerceptionGraphPatternMatch = first( first_matcher.matches(use_lookahead_pruning=True), None) partial_mapping = partial_match.pattern_node_to_matched_graph_node # Try to extend the partial mapping, we expect a semantic infeasibility runtime error second_matcher = altered_perception_pattern.matcher( perception, match_mode=MatchMode.OBJECT) # The partial mapping (obtained from first matcher with original perception graph) # syntactically doesn't match the one in the altered version (second matcher with altered graph) with pytest.raises(RuntimeError): first( second_matcher.matches(initial_partial_match=partial_mapping, use_lookahead_pruning=True), None, )
def test_semantically_infeasible_partial_match(): """ Tests whether semantic feasibility works as intended """ target_object = BOX # Create train and test templates for the target objects train_obj_object = object_variable("obj-with-color", target_object) obj_template = Phase1SituationTemplate( "colored-obj-object", salient_object_variables=[train_obj_object]) template = all_possible(obj_template, chooser=PHASE1_CHOOSER_FACTORY(), ontology=GAILA_PHASE_1_ONTOLOGY) train_curriculum = phase1_instances("all obj situations", situations=template) perceptual_representation = only(train_curriculum.instances())[2] # Original perception graph perception = graph_without_learner( PerceptionGraph.from_frame(perceptual_representation.frames[0])) whole_perception_pattern = PerceptionGraphPattern.from_graph( perception).perception_graph_pattern # Create an altered perception graph we remove the color node altered_perception_digraph = perception.copy_as_digraph() nodes_to_remove = [] edges = [] different_nodes = [] for node in perception.copy_as_digraph().nodes: # If we find a color node, we make it black if isinstance(node, tuple) and isinstance(node[0], RgbColorPerception): new_node = (RgbColorPerception(0, 0, 0), node[1]) # Get edge information for edge in perception.copy_as_digraph().edges(data=True): if edge[0] == node: edges.append((new_node, edge[1], edge[2])) if edge[1] == node: edges.append((edge[0], new_node, edge[2])) nodes_to_remove.append(node) different_nodes.append(new_node) # remove original node altered_perception_digraph.remove_nodes_from(nodes_to_remove) # add new nodes for node in different_nodes: altered_perception_digraph.add_node(node) # add edge information for edge in edges: altered_perception_digraph.add_edge(edge[0], edge[1]) for k, v in edge[2].items(): altered_perception_digraph[edge[0]][edge[1]][k] = v altered_perception_pattern = PerceptionGraphPattern.from_graph( PerceptionGraph(altered_perception_digraph)).perception_graph_pattern partial_digraph = altered_perception_pattern.copy_as_digraph() partial_digraph.remove_nodes_from([ node for node in partial_digraph.nodes if isinstance(node, IsColorNodePredicate) ]) # Start the matching process, get a partial match matcher = whole_perception_pattern.matcher(perception, match_mode=MatchMode.OBJECT) partial_match: PerceptionGraphPatternMatch = first( matcher.matches(use_lookahead_pruning=True)) partial_mapping = partial_match.pattern_node_to_matched_graph_node # Try to extend the partial mapping, we expect a semantic infeasibility runtime error second_matcher = whole_perception_pattern.matcher( PerceptionGraph(altered_perception_digraph), match_mode=MatchMode.OBJECT) # The partial mapping (obtained from first matcher with original perception graph) # semantically doesn't match the one in the altered version (second matcher with altered graph) with pytest.raises(RuntimeError): first( second_matcher.matches(initial_partial_match=partial_mapping, use_lookahead_pruning=True), None, )
def test_last_failed_pattern_node(): """ Tests whether `MatchFailure` can find the correct node. """ target_object = BOX # Create train and test templates for the target objects train_obj_object = object_variable("obj-with-color", target_object) obj_template = Phase1SituationTemplate( "colored-obj-object", salient_object_variables=[train_obj_object]) template = all_possible(obj_template, chooser=PHASE1_CHOOSER_FACTORY(), ontology=GAILA_PHASE_1_ONTOLOGY) train_curriculum = phase1_instances("all obj situations", situations=template) for (_, _, perceptual_representation) in train_curriculum.instances(): # Original perception graph perception = graph_without_learner( PerceptionGraph.from_frame(perceptual_representation.frames[0])) # Original perception pattern whole_perception_pattern = PerceptionGraphPattern.from_graph( perception).perception_graph_pattern # Create an altered perception graph we replace the color node altered_perception_digraph = perception.copy_as_digraph() nodes_to_remove = [] edges = [] different_nodes = [] for node in perception.copy_as_digraph().nodes: # If we find a color node, we make it black if isinstance(node, tuple) and isinstance(node[0], RgbColorPerception): new_node = (RgbColorPerception(0, 0, 0), 42) # Get edge information for edge in perception.copy_as_digraph().edges(data=True): if edge[0] == node: edges.append((new_node, edge[1], edge[2])) if edge[1] == node: edges.append((edge[0], new_node, edge[2])) nodes_to_remove.append(node) different_nodes.append(new_node) # add new nodes for node in different_nodes: altered_perception_digraph.add_node(node) # add edge information for edge in edges: altered_perception_digraph.add_edge(edge[0], edge[1]) for k, v in edge[2].items(): altered_perception_digraph[edge[0]][edge[1]][k] = v # remove original node altered_perception_digraph.remove_nodes_from(nodes_to_remove) # Start the matching process matcher = whole_perception_pattern.matcher( PerceptionGraph(altered_perception_digraph), match_mode=MatchMode.NON_OBJECT) match_or_failure = matcher.first_match_or_failure_info() assert isinstance(match_or_failure, PatternMatching.MatchFailure) assert isinstance(match_or_failure.last_failed_pattern_node, IsColorNodePredicate)
def _hypothesis_from_perception( self, perception: PerceptionGraph) -> PerceptionGraphTemplate: return PerceptionGraphTemplate( graph_pattern=PerceptionGraphPattern.from_graph( perception).perception_graph_pattern)