示例#1
0
def test_learn():
    layerContainer = [
        #3, 150, 150
        conv.ConvLayer(optimizer=adam.AdamConv(),
                       load_path="ff2c1",
                       filtershape=(32, 3, 3, 3),
                       stride_length=1,
                       pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2),
                       ishape=(3, 150, 150)),

        #32, 74, 74
        conv.ConvLayer(optimizer=adam.AdamConv(),
                       load_path="ff2c2",
                       filtershape=(64, 32, 3, 3),
                       stride_length=1,
                       pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2),
                       ishape=(32, 74, 74)),

        #64, 36, 36
        conv.ConvLayer(optimizer=adam.AdamConv(),
                       load_path="ff2c3",
                       filtershape=(128, 64, 3, 3),
                       stride_length=1,
                       pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2),
                       ishape=(64, 36, 36)),

        #128, 17, 17
        fcnetwork.FCLayer(optimizer=adam.AdamFC(),
                          load_path="ff2fcn1",
                          arch=[36992, 512, 128],
                          activation_func="relu",
                          is_classifier=False),
        softmax.SoftmaxLayer(optimizer=adam.AdamFC(),
                             load_path="ff2softm",
                             arch=[128, 5])
    ]
    # signal.signal(signal.SIGINT, signal_handler)

    ## here learning rate is useless
    model_FAndF = model.Model(learning_rate=0.001,
                              dataset=None,
                              layerContainer=layerContainer)

    pic = iml.ImageLoader.getOutputNpArray(example1,
                                           crop=True,
                                           crop_size=(0, 0, 150, 150))

    y = model_FAndF.compute(pic)
    print(y)
示例#2
0
    def simple_adam_optimizer_test(self):
        train, test_data = dataloader.load_some_flowers(5,
                                                        0,
                                                        crop_size=(0, 0, 150,
                                                                   150))

        x = list(train)[0][0]

        c1 = conv.ConvLayer(optimizer=adam.AdamConv(),
                            filtershape=(32, 3, 3, 3),
                            stride_length=1,
                            pool=pool.PoolLayer(pool_size=(2, 2),
                                                stride_length=2),
                            ishape=(3, 150, 150))

        initFilters, initBiases = c1.getFiltersAndBiases()

        out = c1.compute(x, learn=True)

        false_delta = numpy.random.randn(*(32, 74, 74))

        c1.learn(false_delta)

        c1.modify_weights(learning_rate=0.1, batch_size=1)

        finalFilters, finalBiases = c1.getFiltersAndBiases()

        # print(f"init f {initFilters}")
        # print(f"final f {finalFilters}")

        self.assertFalse((initFilters == finalFilters).all())
        self.assertFalse((initBiases == finalBiases).all())
示例#3
0
def flowerAndFun(path=example1):
    input = iml.ImageLoader.getOutputNpArray(path,
                                             crop=True,
                                             crop_size=(0, 0, 150, 150))

    layerContainer = [
        #3, 150, 150
        conv.ConvLayer(optimizer=adam.AdamConv(),
                       filtershape=(32, 3, 3, 3),
                       stride_length=1,
                       pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2),
                       ishape=(3, 150, 150)),

        #32, 74, 74
        conv.ConvLayer(optimizer=adam.AdamConv(),
                       filtershape=(64, 32, 3, 3),
                       stride_length=1,
                       pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2),
                       ishape=(32, 74, 74)),

        #64, 36, 36
        conv.ConvLayer(optimizer=adam.AdamConv(),
                       filtershape=(128, 64, 3, 3),
                       stride_length=1,
                       pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2),
                       ishape=(64, 36, 36)),

        #128, 17, 17
        fcnetwork.FCLayer(optimizer=adam.AdamFC(), arch=[36992, 512, 128, 5])
    ]
    learning_rate = 0.0001

    model_FAndF = model.Model(learning_rate=learning_rate,
                              dataset=None,
                              layerContainer=layerContainer)

    # output = model_FAndF.compute(input, learn=True)

    # model_FAndF.soft_learn()
    model_FAndF.test_learn(epoch=50)
示例#4
0
def flowerAndFun2(path=example1):
    def signal_handler(sig, frame):
        # saveModel.saveLayers(["ff2c1", "ff2c2", "ff2c3", "ff2fcn1", "ff2softm"])
        pic = iml.ImageLoader.getOutputNpArray(example1,
                                               crop=True,
                                               crop_size=(0, 0, 150, 150))

        y = saveModel.compute(pic)
        saveModel.saveLayers([
            "ff2c1", "d1", "ff2c2", "d2", "ff2c3", "d3", "ff2fcn1", "d4",
            "ff2softm"
        ])
        print(y)
        sys.exit(0)

    input = iml.ImageLoader.getOutputNpArray(path,
                                             crop=True,
                                             crop_size=(0, 0, 150, 150))

    # layerContainer = [
    #     #3, 150, 150
    #     conv.ConvLayer(optimizer=adam.AdamConv(), filtershape=(32, 3, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(3, 150, 150)),
    #     dropout.DropoutLayer(p=0.2, ishape=(32, 74, 74)),

    #     #32, 74, 74
    #     conv.ConvLayer(optimizer=adam.AdamConv(), filtershape=(64, 32, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(32, 74, 74)),
    #     dropout.DropoutLayer(p=0.2, ishape=(64, 36, 36)),

    #     #64, 36, 36
    #     conv.ConvLayer(optimizer=adam.AdamConv(), filtershape=(128, 64, 3, 3), stride_length=1, pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2), ishape=(64, 36, 36)),
    #     dropout.DropoutLayer(p=0.2, ishape=(128, 17, 17)),

    #     #128, 17, 17
    #     fcnetwork.FCLayer(optimizer=adam.AdamFC(), arch=[36992, 512, 128], activation_func="relu", is_classifier=False),
    #     dropout.DropoutLayer(p=0.2, ishape=(128,)),

    #     softmax.SoftmaxLayer(optimizer=adam.AdamFC(), arch=[128, 5])
    # ]
    # # load net
    layerContainer = [
        #3, 150, 150
        conv.ConvLayer(optimizer=adam.AdamConv(),
                       load_path="ff2c1",
                       filtershape=(32, 3, 3, 3),
                       stride_length=1,
                       pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2),
                       ishape=(3, 150, 150)),
        dropout.DropoutLayer(p=0.2, ishape=(32, 74, 74)),

        #32, 74, 74
        conv.ConvLayer(optimizer=adam.AdamConv(),
                       load_path="ff2c2",
                       filtershape=(64, 32, 3, 3),
                       stride_length=1,
                       pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2),
                       ishape=(32, 74, 74)),
        dropout.DropoutLayer(p=0.2, ishape=(64, 36, 36)),

        #64, 36, 36
        conv.ConvLayer(optimizer=adam.AdamConv(),
                       load_path="ff2c3",
                       filtershape=(128, 64, 3, 3),
                       stride_length=1,
                       pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2),
                       ishape=(64, 36, 36)),
        dropout.DropoutLayer(p=0.2, ishape=(128, 17, 17)),

        #128, 17, 17
        fcnetwork.FCLayer(optimizer=adam.AdamFC(),
                          load_path="ff2fcn1",
                          arch=[36992, 512, 128],
                          activation_func="relu",
                          is_classifier=False),
        dropout.DropoutLayer(p=0.2, ishape=(128, )),
        softmax.SoftmaxLayer(optimizer=adam.AdamFC(),
                             load_path="ff2softm",
                             arch=[128, 5])
    ]
    signal.signal(signal.SIGINT, signal_handler)

    ## here learning rate is useless
    model_FAndF = model.Model(learning_rate=0.001,
                              dataset=None,
                              layerContainer=layerContainer)

    saveModel = model_FAndF
    # saveModel.saveLayers(["ff2c1", "ff2c2", "ff2c3", "ff2fcn1", "ff2softm"])

    model_FAndF.test_learn(epoch=50)
示例#5
0
def flowerAndFunModel(path=example1):

    #it crops by 224x224 by default
    print(f"Model load this picture as input: {path}")
    input = iml.ImageLoader.getOutputNpArray(path,
                                             crop=True,
                                             crop_size=(0, 0, 150, 150))
    dir = "./tensorfiles"

    if not os.path.exists(dir + "/" + "ff2c1" + ".ws1.npy"):
        layerContainer = [
            #3, 150, 150
            conv.ConvLayer(optimizer=adam.AdamConv(),
                           filtershape=(32, 3, 3, 3),
                           stride_length=1,
                           pool=pool.PoolLayer(pool_size=(2, 2),
                                               stride_length=2),
                           ishape=(3, 150, 150)),

            #32, 74, 74
            conv.ConvLayer(optimizer=adam.AdamConv(),
                           filtershape=(64, 32, 3, 3),
                           stride_length=1,
                           pool=pool.PoolLayer(pool_size=(2, 2),
                                               stride_length=2),
                           ishape=(32, 74, 74)),

            #64, 36, 36
            conv.ConvLayer(optimizer=adam.AdamConv(),
                           filtershape=(128, 64, 3, 3),
                           stride_length=1,
                           pool=pool.PoolLayer(pool_size=(2, 2),
                                               stride_length=2),
                           ishape=(64, 36, 36)),

            #128, 17, 17
            fcnetwork.FCLayer(optimizer=adam.AdamFC(),
                              arch=[36992, 512, 128],
                              activation_func="relu",
                              is_classifier=False),
            softmax.SoftmaxLayer(optimizer=adam.AdamFC(), arch=[128, 5])
        ]
        ffM = model.Model(learning_rate=None,
                          dataset=None,
                          layerContainer=layerContainer)
        ffM.saveLayers(["ff2c1", "ff2c2", "ff2c3", "ff2fcn1", "ff2softm"])

    layerContainer = [
        conv.ConvLayer(optimizer=adam.AdamConv(),
                       load_path="ff2c1",
                       filtershape=(32, 3, 3, 3),
                       stride_length=1,
                       pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2),
                       ishape=(3, 150, 150)),

        #32, 74, 74
        conv.ConvLayer(optimizer=adam.AdamConv(),
                       load_path="ff2c2",
                       filtershape=(64, 32, 3, 3),
                       stride_length=1,
                       pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2),
                       ishape=(32, 74, 74)),

        #64, 36, 36
        conv.ConvLayer(optimizer=adam.AdamConv(),
                       load_path="ff2c3",
                       filtershape=(128, 64, 3, 3),
                       stride_length=1,
                       pool=pool.PoolLayer(pool_size=(2, 2), stride_length=2),
                       ishape=(64, 36, 36)),

        #128, 17, 17
        fcnetwork.FCLayer(optimizer=adam.AdamFC(),
                          load_path="ff2fcn1",
                          arch=[36992, 512, 128],
                          activation_func="relu",
                          is_classifier=False),
        softmax.SoftmaxLayer(optimizer=adam.AdamFC(),
                             load_path="ff2softm",
                             arch=[128, 5])
    ]

    ffM = model.Model(learning_rate=None,
                      dataset=None,
                      layerContainer=layerContainer)

    try:
        output = ffM.compute(input)
    except:
        print("error occured in zf5 model")
        return "error"
    return return_response(output)


# print(zf5model())
# overfeat()
# a = numpy.array(
#         [[1, 2, 3, 4, 5, 6],
#         [1, 2, 3, 4, 5, 6],
#         [1, 2, 3, 4, 5, 6],
#         [1, 2, 3, 4, 5, 6],
#         [1, 2, 3, 4, 5, 6],
#         [1, 2, 3, 4, 5, 6]])