示例#1
0
def init_project(p_name,
                 sys_name=None,
                 m_freq=None,
                 p_freq=None,
                 platform=None,
                 dbhost=None,
                 w_threads=None):
    #def init_project(p_name, **freq):

    from adaptivemd import Project

    #if p_name in Project.list():
    #    print(project.name, "Deleting existing version of this test project")
    #    Project.delete(p_name)

    if dbhost is not None:
        Project.set_dbhost(dbhost)

    project = Project(p_name)

    if project.name in Project.list():
        print(
            project.name,
            "Project {0} exists, reading it from database".format(
                project.name))

    else:

        from adaptivemd import File, OpenMMEngine
        from adaptivemd.analysis.pyemma import PyEMMAAnalysis

        #####################################
        # NEW initialize sequence
        configuration_file = 'configuration.cfg'
        project.initialize(configuration_file)
        #
        # OLD initialize sequence
        #from adaptivemd import LocalResource
        #resource = LocalResource('/lustre/atlas/scratch/jrossyra/bip149/admd/')
        #project.initialize(resource)
        #####################################

        f_name = '{0}.pdb'.format(sys_name)

        # only works if filestructure is preserved as described in 'jro_ntl9.ipynb'
        # and something akin to job script in 'admd_workers.pbs' is used
        f_base = 'file:///$ADAPTIVEMD/examples/files/{0}/'.format(sys_name)

        f_structure = File(f_base + f_name).load()

        f_system_2 = File(f_base + 'system-2.xml').load()
        f_integrator_2 = File(f_base + 'integrator-2.xml').load()

        f_system_5 = File(f_base + 'system-5.xml').load()
        f_integrator_5 = File(f_base + 'integrator-5.xml').load()

        sim_args = '-r -p {0}'.format(platform)

        if platform == 'CPU':
            print(
                project.name,
                "Using CPU simulation platform with {0} threads per worker".
                format(w_threads))

            sim_args += ' --cpu-cpu-threads {0}'.format(w_threads)

        engine_2 = OpenMMEngine(f_system_2, f_integrator_2, f_structure,
                                sim_args).named('openmm-2')

        engine_5 = OpenMMEngine(f_system_5, f_integrator_5, f_structure,
                                sim_args).named('openmm-5')

        m_freq_2 = m_freq
        p_freq_2 = p_freq
        m_freq_5 = m_freq * 2 / 5
        p_freq_5 = p_freq * 2 / 5

        engine_2.add_output_type('master', 'allatoms.dcd', stride=m_freq_2)
        engine_2.add_output_type('protein',
                                 'protein.dcd',
                                 stride=p_freq_2,
                                 selection='protein')

        engine_5.add_output_type('master', 'allatoms.dcd', stride=m_freq_5)
        engine_5.add_output_type('protein',
                                 'protein.dcd',
                                 stride=p_freq_5,
                                 selection='protein')

        ca_features = {'add_distances_ca': None}
        #features = {'add_inverse_distances': {'select_Backbone': None}}
        ca_modeller_2 = PyEMMAAnalysis(engine_2, 'protein',
                                       ca_features).named('pyemma-ca-2')

        ca_modeller_5 = PyEMMAAnalysis(engine_5, 'protein',
                                       ca_features).named('pyemma-ca-5')

        pos = [
            '(rescode K and mass > 13) ' + 'or (rescode R and mass > 13) ' +
            'or (rescode H and mass > 13)'
        ]
        neg = ['(rescode D and mass > 13) ' + 'or (rescode E and mass > 13)']

        ionic_features = {
            'add_distances': {
                'select': pos
            },
            'kwargs': {
                'indices2': {
                    'select': neg
                }
            }
        }

        all_features = [ca_features, ionic_features]

        #ok#ionic_modeller = {'add_distances': {'select':
        #ok#                                   ['rescode K or rescode R or rescode H']},
        #ok#                  'kwargs': {'indices2': {'select':
        #ok#                                   'rescode D or rescode E']}}}
        #contact_features = [ {'add_inverse_distances':
        #                         {'select_Backbone': None}},
        #                     {'add_residue_mindist': None,
        #                      'kwargs': {'threshold': 0.6}}
        #                   ]

        all_modeller_2 = PyEMMAAnalysis(engine_2, 'protein',
                                        all_features).named('pyemma-ionic-2')

        all_modeller_5 = PyEMMAAnalysis(engine_5, 'protein',
                                        all_features).named('pyemma-ionic-5')

        project.generators.add(ca_modeller_2)
        project.generators.add(all_modeller_2)
        project.generators.add(ca_modeller_5)
        project.generators.add(all_modeller_5)
        project.generators.add(engine_2)
        project.generators.add(engine_5)

        [print(g) for g in project.generators]

    return project
示例#2
0
        resource = LocalResource(15, 2)
        resource.add_path(amp.path_conda_local_jhp)
    elif resource_id == 'local.sheep':
        resource = LocalResource(15, 2)
        resource.add_path(amp.path_conda_local_sheep)
    elif resource_id == 'fub.allegro':
        resource = AllegroCluster(15, 4, 'big')
        resource.add_path(amp.path_conda_allegro_jhp)
    else:
        resource = LocalResource(1, 2)

    # --------------------------------------------------------------------------
    # CREATE THE ENGINE
    #   the instance to create trajectories
    # --------------------------------------------------------------------------
    pdb_file = File('file://input.pdb')

    engine = OpenMMEngine(pdb_file=pdb_file,
                          system_file=File('file://system.xml'),
                          integrator_file=File('file://integrator.xml'))

    engine.args = '-r --report-interval 1 -p fastest --store-interval 1'

    # --------------------------------------------------------------------------
    # CREATE THE CLUSTER
    #   the instance that runs the simulations on the resource
    # --------------------------------------------------------------------------

    cluster = MDCluster(system='alanine', resource=resource, report=report)

    # add the path to CONDA if now already in the default
示例#3
0
    project = Project(project_name)

    if len(sys.argv) == 3:

        if resource_id == 'local.jhp':
            project.initialize(LocalJHP)
        elif resource_id == 'local.sheep':
            project.initialize(LocalSheep)
        elif resource_id == 'fub.allegro':
            project.initialize(AllegroCluster)

    # --------------------------------------------------------------------------
    # CREATE THE ENGINE
    #   the instance to create trajectories
    # --------------------------------------------------------------------------
    pdb_file = File('file://files/input.pdb')

    engine = OpenMMEngine(
        pdb_file=pdb_file,
        system_file=File('file://files/system.xml'),
        integrator_file=File('file://files/integrator.xml'),
        args='-r --report-interval 1 -p CPU --store-interval 1')

    # --------------------------------------------------------------------------
    # CREATE THE MODELLER
    #   the instance to create msm models
    # --------------------------------------------------------------------------
    modeller = PyEMMAAnalysis(pdb_file=pdb_file,
                              source_folder=File('../staging_area/ntl9/trajs'))

    # --------------------------------------------------------------------------
if __name__ == '__main__':

    project = Project('testcase')

    # --------------------------------------------------------------------------
    # CREATE THE RESOURCE
    #   the instance to know about the place where we run simulations
    # --------------------------------------------------------------------------

    project.initialize(LocalResource('$HOME/miniconda2/bin'))

    # --------------------------------------------------------------------------
    # CREATE THE ENGINE
    #   the instance to create trajectories
    # --------------------------------------------------------------------------
    pdb_file = File('file://../files/alanine/alanine.pdb').named('initial_pdb')

    engine = OpenMMEngine(
        pdb_file=pdb_file,
        system_file=File('file://../files/alanine/system.xml'),
        integrator_file=File('file://../files/alanine/integrator.xml'),
        args='-r --report-interval 1 -p CPU --store-interval 1').named(
            'openmm')

    # --------------------------------------------------------------------------
    # CREATE AN ANALYZER
    #   the instance that knows how to compute a msm from the trajectories
    # --------------------------------------------------------------------------

    modeller = PyEMMAAnalysis(pdb_file=pdb_file).named('pyemma')
示例#5
0
def init_project(p_name,
                 sys_name=None,
                 m_freq=None,
                 p_freq=None,
                 platform=None,
                 reinitialize=False):  #, dblocation=None):
    #def init_project(p_name, **freq):

    from adaptivemd import Project

    #if p_name in Project.list():
    #    print("Deleting existing version of this test project")
    #    Project.delete(p_name)

    dburl = os.environ.get("ADMD_DBURL", 0)
    if dburl:
        logger.info("Set ADMD_DBURL to: " + dburl)
        Project.set_dburl(dburl)
# if dblocation is not None:

#     Project.set_dblocation(dblocation)

    if reinitialize:
        logger.info(
            "Project {0} exists, deleting it from database to reinialize".
            format(p_name))
        Project.delete(p_name)

    if p_name in Project.list():
        logger.info(
            "Project {0} exists, reading it from database".format(p_name))
        project = Project(p_name)

    elif not all([sys_name, m_freq, p_freq, platform]):
        raise ValueError(
            "Must define all parameters [{0}] to initialize new project\nHave: {1}"
            .format("sys_name,m_freq,p_freq,platform",
                    [sys_name, m_freq, p_freq, platform].__repr__()))

    else:

        project = Project(p_name)

        from adaptivemd import File, OpenMMEngine
        from adaptivemd.analysis.pyemma import PyEMMAAnalysis

        # Initialize w/ config file: 1 of multiple options
        # TODO add config filename argument
        configuration_file = 'configuration.cfg'
        project.initialize(configuration_file)

        f_name = '{0}.pdb'.format(sys_name)

        # FIXME add system specifications to configuration file
        f_base = 'file:///$ADMD_FILES/{0}/'.format(sys_name)

        f_structure = File(f_base + f_name).load()

        f_system_2 = File(f_base + 'system-2.xml').load()
        f_integrator_2 = File(f_base + 'integrator-2.xml').load()

        f_system_5 = File(f_base + 'system-5.xml').load()
        f_integrator_5 = File(f_base + 'integrator-5.xml').load()

        sim_args = '-r -p {0}'.format(platform)

        engine_2 = OpenMMEngine(f_system_2, f_integrator_2, f_structure,
                                sim_args).named('openmm-2')

        engine_5 = OpenMMEngine(f_system_5, f_integrator_5, f_structure,
                                sim_args).named('openmm-5')

        # FIXME this is dumb and hard for user to deal with
        # TODO engine selection by name
        m_freq_2 = m_freq
        p_freq_2 = p_freq
        m_freq_5 = m_freq * 2 / 5
        p_freq_5 = p_freq * 2 / 5

        engine_2.add_output_type('master', 'allatoms.dcd', stride=m_freq_2)
        engine_2.add_output_type('protein',
                                 'protein.dcd',
                                 stride=p_freq_2,
                                 selection='protein')

        engine_5.add_output_type('master', 'allatoms.dcd', stride=m_freq_5)
        engine_5.add_output_type('protein',
                                 'protein.dcd',
                                 stride=p_freq_5,
                                 selection='protein')

        ca_features = {'add_distances_ca': None}
        #features = {'add_inverse_distances': {'select_Backbone': None}}
        ca_modeller_2 = PyEMMAAnalysis(engine_2, 'protein',
                                       ca_features).named('pyemma-ca-2')

        ca_modeller_5 = PyEMMAAnalysis(engine_5, 'protein',
                                       ca_features).named('pyemma-ca-5')

        pos = [
            '(rescode K and mass > 13) ' + 'or (rescode R and mass > 13) ' +
            'or (rescode H and mass > 13)'
        ]
        neg = ['(rescode D and mass > 13) ' + 'or (rescode E and mass > 13)']

        ionic_features = {
            'add_distances': {
                'select': pos
            },
            'kwargs': {
                'indices2': {
                    'select': neg
                }
            }
        }

        all_features = [ca_features, ionic_features]

        inv_ca_features = {'add_inverse_distances': {'select_Ca': None}}

        #ok#ionic_modeller = {'add_distances': {'select':
        #ok#                                   ['rescode K or rescode R or rescode H']},
        #ok#                  'kwargs': {'indices2': {'select':
        #ok#                                   'rescode D or rescode E']}}}
        #contact_features = [ {'add_inverse_distances':
        #                         {'select_Backbone': None}},
        #                     {'add_residue_mindist': None,
        #                      'kwargs': {'threshold': 0.6}}
        #                   ]

        all_modeller_2 = PyEMMAAnalysis(engine_2, 'protein',
                                        all_features).named('pyemma-ionic-2')

        all_modeller_5 = PyEMMAAnalysis(engine_5, 'protein',
                                        all_features).named('pyemma-ionic-5')

        inv_modeller_2 = PyEMMAAnalysis(
            engine_2, 'protein', inv_ca_features).named('pyemma-invca-2')

        inv_modeller_5 = PyEMMAAnalysis(
            engine_5, 'protein', inv_ca_features).named('pyemma-invca-5')

        project.generators.add(ca_modeller_2)
        project.generators.add(all_modeller_2)
        project.generators.add(inv_modeller_2)
        project.generators.add(ca_modeller_5)
        project.generators.add(all_modeller_5)
        project.generators.add(inv_modeller_5)
        project.generators.add(engine_2)
        project.generators.add(engine_5)

        #[print(g) for g in project.generators]

    return project
示例#6
0
    def test(self):
        # ----------------------------------------------------------------------
        # CREATE THE ENGINE
        #   the instance to create trajectories
        # ----------------------------------------------------------------------

        pdb_file = File('file://{0}alanine.pdb'.format(
            self.f_base)).named('initial_pdb').load()

        engine = OpenMMEngine(
            pdb_file=pdb_file,
            system_file=File('file://{0}system.xml'.format(
                self.f_base)).load(),
            integrator_file=File('file://{0}integrator.xml'.format(
                self.f_base)).load(),
            args='-r --report-interval 1 -p CPU --store-interval 1 -v').named(
                'openmm')

        # ----------------------------------------------------------------------
        # CREATE AN ANALYZER
        #   the instance that knows how to compute a msm from the trajectories
        # ----------------------------------------------------------------------

        modeller = PyEMMAAnalysis(engine=engine).named('pyemma')

        self.project.generators.add(engine)
        self.project.generators.add(modeller)

        def strategy(loops=1, trajs_per_loop=1, length=1):
            initial_traj = self.project.new_trajectory(frame=pdb_file,
                                                       length=length)
            task = engine.run(initial_traj)
            self.project.queue(task)
            yield task.is_done

            for loop in range(loops):
                # submit some trajectory tasks
                trajectories = self.project.new_ml_trajectory(
                    engine=engine, length=length, number=trajs_per_loop)
                tasks = tuple(map(engine.run, trajectories))
                self.project.queue(tasks)
                print("queued %s tasks" % len(tasks))

                # continue if ALL of the tasks are done (can be failed)
                yield [task.is_done for task in tasks]

                # submit a model job
                task = modeller.execute(list(self.project.trajectories))
                self.project.queue(task)
                print("queued modeller task")

                # when it is done do next loop
                yield task.is_done

        # TODO worker/MD running in subprocess thread horribly slow
        #      - can it be made to run a bit faster?
        n_loops = 1
        trajs_per_loop = 1
        self.project.add_event(
            strategy(loops=n_loops, trajs_per_loop=trajs_per_loop))
        self.project.run()
        self.project.wait_until(self.project.on_ntraj(n_loops *
                                                      trajs_per_loop))

        self.assertEqual(len(list(self.project.trajectories)),
                         n_loops * trajs_per_loop)
        self.project.close()
    def test(self):
        # ----------------------------------------------------------------------
        # CREATE THE ENGINE
        #   the instance to create trajectories
        # ----------------------------------------------------------------------

        pdb_file = File('file://{0}alanine.pdb'.format(
            self.f_base)).named('initial_pdb').load()

        engine = OpenMMEngine(
            pdb_file=pdb_file,
            system_file=File('file://{0}system.xml'.format(
                self.f_base)).load(),
            integrator_file=File('file://{0}integrator.xml'.format(
                self.f_base)).load(),
            args='-r --report-interval 1 -p CPU --store-interval 1').named(
                'openmm')

        # ----------------------------------------------------------------------
        # CREATE AN ANALYZER
        #   the instance that knows how to compute a msm from the trajectories
        # ----------------------------------------------------------------------

        modeller = PyEMMAAnalysis(engine=engine).named('pyemma')

        self.project.generators.add(engine)
        self.project.generators.add(modeller)

        # ----------------------------------------------------------------------
        # CREATE THE CLUSTER
        #   the instance that runs the simulations on the resource
        # ----------------------------------------------------------------------
        traj_len = 1
        trajectory = self.project.new_trajectory(engine['pdb_file'], traj_len,
                                                 engine)
        task = engine.run(trajectory)

        # self.project.queue(task)

        pdb = md.load('{0}alanine.pdb'.format(self.f_base))

        # this part fakes a running worker without starting the worker process
        worker = WorkerScheduler(self.project.configuration, verbose=True)
        worker.enter(self.project)

        worker.submit(task)

        self.assertEqual(len(self.project.trajectories), 0)

        while not task.is_done():
            worker.advance()

        try:
            assert (len(self.project.trajectories) == 1)
        except AssertionError:
            print("stderr from worker task: \n%s" % task.stderr)
            print("stdout from worker task: \n%s" % task.stdout)
            raise
        print("stdout of worker:\n%s" % task.stdout)

        # FIXME: the worker space is cleared, so the trajectory paths are not valid anymore.
        # traj_path = os.path.join(
        #     worker.path,
        #     'workers',
        #     'worker.' + hex(task.__uuid__),
        #     worker.replace_prefix(self.project.trajectories.one.url)
        # )
        # this is a workaround, but assumes that sandbox:// lives on the same fs.
        traj_path = os.path.join(self.shared_path,
                                 self.project.trajectories.one.dirname[1:],
                                 'output.dcd')

        assert (os.path.exists(traj_path)), traj_path

        # go back to the place where we ran the test
        traj = md.load(traj_path, top=pdb)

        assert (len(traj) == traj_len + 1), len(traj)

        # well, we have a 100 step trajectory which matches the size of the initial PDB
        # that is a good sign

        # extend the trajectory by 10
        task2 = task.extend(10)

        worker.submit(task2)

        while not task2.is_done():
            worker.advance()

        # should still be one, since we have the same trajectory
        assert (len(self.project.trajectories) == 1)

        traj = md.load(traj_path, top=pdb)

        self.assertEqual(len(traj), traj_len + 10 + 1)

        # after extension it is traj_len + 10 frames. Excellent

        self.project.close()