示例#1
0
def do_save_inference_model(args):

    test_prog = fluid.default_main_program()
    startup_prog = fluid.default_startup_program()

    with fluid.program_guard(test_prog, startup_prog):
        test_prog.random_seed = args.random_seed
        startup_prog.random_seed = args.random_seed

        with fluid.unique_name.guard():

            context_wordseq = fluid.data(
                name='context_wordseq',
                shape=[-1, 1],
                dtype='int64',
                lod_level=1)
            response_wordseq = fluid.data(
                name='response_wordseq',
                shape=[-1, 1],
                dtype='int64',
                lod_level=1)
            labels = fluid.data(name='labels', shape=[-1, 1], dtype='int64')

            input_inst = [context_wordseq, response_wordseq, labels]
            input_field = InputField(input_inst)
            data_reader = fluid.io.PyReader(
                feed_list=input_inst, capacity=4, iterable=False)

            logits = create_net(
                is_training=False, model_input=input_field, args=args)

    if args.use_cuda:
        place = fluid.CUDAPlace(0)
    else:
        place = fluid.CPUPlace()

    exe = fluid.Executor(place)
    exe.run(startup_prog)

    assert (args.init_from_params) or (args.init_from_pretrain_model)

    if args.init_from_params:
        save_load_io.init_from_params(args, exe, test_prog)
    elif args.init_from_pretrain_model:
        save_load_io.init_from_pretrain_model(args, exe, test_prog)

    # saving inference model
    fluid.io.save_inference_model(
        args.inference_model_dir,
        feeded_var_names=[
            input_field.context_wordseq.name,
            input_field.response_wordseq.name,
        ],
        target_vars=[logits, ],
        executor=exe,
        main_program=test_prog,
        model_filename="model.pdmodel",
        params_filename="params.pdparams")

    print("save inference model at %s" % (args.inference_model_dir))
示例#2
0
def do_predict(args):
    """
    predict function
    """
    test_prog = fluid.default_main_program()
    startup_prog = fluid.default_startup_program()

    with fluid.program_guard(test_prog, startup_prog):
        test_prog.random_seed = args.random_seed
        startup_prog.random_seed = args.random_seed

        with fluid.unique_name.guard():

            context_wordseq = fluid.data(
                name='context_wordseq',
                shape=[-1, 1],
                dtype='int64',
                lod_level=1)
            response_wordseq = fluid.data(
                name='response_wordseq',
                shape=[-1, 1],
                dtype='int64',
                lod_level=1)
            labels = fluid.data(name='labels', shape=[-1, 1], dtype='int64')

            input_inst = [context_wordseq, response_wordseq, labels]
            input_field = InputField(input_inst)
            data_reader = fluid.io.DataLoader.from_generator(
                feed_list=input_inst, capacity=4, iterable=False)

            logits = create_net(
                is_training=False, model_input=input_field, args=args)

            fetch_list = [logits.name]
    #for_test is True if change the is_test attribute of operators to True
    test_prog = test_prog.clone(for_test=True)
    if args.use_cuda:
        place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0')))
    else:
        place = fluid.CPUPlace()

    exe = fluid.Executor(place)
    exe.run(startup_prog)

    assert (args.init_from_params) or (args.init_from_pretrain_model)
    if args.init_from_params:
        fluid.load(test_prog, args.init_from_params, executor=exe)
    if args.init_from_pretrain_model:
        fluid.load(test_prog, args.init_from_pretrain_model, executor=exe)

    compiled_test_prog = fluid.CompiledProgram(test_prog)

    processor = reader.DataProcessor(
        data_path=args.predict_file,
        max_seq_length=args.max_seq_len,
        batch_size=args.batch_size)

    batch_generator = processor.data_generator(
        place=place, phase="test", shuffle=False, sample_pro=1)
    num_test_examples = processor.get_num_examples(phase='test')

    data_reader.set_batch_generator(batch_generator, places=place)
    data_reader.start()

    scores = []
    while True:
        try:
            results = exe.run(compiled_test_prog, fetch_list=fetch_list)
            scores.extend(results[0])
        except fluid.core.EOFException:
            data_reader.reset()
            break

    scores = scores[:num_test_examples]
    print("Write the predicted results into the output_prediction_file")
    fw = io.open(args.output_prediction_file, 'w', encoding="utf8")
    for index, score in enumerate(scores):
        fw.write(u"%s\t%s\n" % (index, score[0]))
    print("finish........................................")
示例#3
0
def do_train(args):
    """train function"""

    train_prog = fluid.default_main_program()
    startup_prog = fluid.default_startup_program()

    with fluid.program_guard(train_prog, startup_prog):
        train_prog.random_seed = args.random_seed
        startup_prog.random_seed = args.random_seed

        with fluid.unique_name.guard(): 
            context_wordseq = fluid.layers.data(
                    name='context_wordseq', shape=[1], dtype='int64', lod_level=1)
            response_wordseq = fluid.layers.data(
                    name='response_wordseq', shape=[1], dtype='int64', lod_level=1)
            labels = fluid.layers.data(
                    name='labels', shape=[1], dtype='int64')

            input_inst = [context_wordseq, response_wordseq, labels]
            input_field = InputField(input_inst)
            data_reader = fluid.io.PyReader(feed_list=input_inst, 
                        capacity=4, iterable=False)

            loss = create_net(
                    is_training=True,
                    model_input=input_field, 
                    args=args
                )
            loss.persistable = True
            # gradient clipping
            fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByValue(
                max=1.0, min=-1.0))
            optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
            optimizer.minimize(loss)

            if args.use_cuda:
                dev_count = fluid.core.get_cuda_device_count()
                place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0')))
            else: 
                dev_count = int(
                    os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
                place = fluid.CPUPlace()

            processor = reader.DataProcessor(
                data_path=args.training_file,
                max_seq_length=args.max_seq_len, 
                batch_size=args.batch_size)

            batch_generator = processor.data_generator(
                place=place,
                phase="train",
                shuffle=True, 
                sample_pro=args.sample_pro)

            num_train_examples = processor.get_num_examples(phase='train')
            max_train_steps = args.epoch * num_train_examples // dev_count // args.batch_size

            print("Num train examples: %d" % num_train_examples)
            print("Max train steps: %d" % max_train_steps)

    data_reader.decorate_batch_generator(batch_generator)

    exe = fluid.Executor(place)
    exe.run(startup_prog)

    assert (args.init_from_checkpoint == "") or (
        args.init_from_pretrain_model == "")

    #init from some checkpoint, to resume the previous training
    if args.init_from_checkpoint: 
        save_load_io.init_from_checkpoint(args, exe, train_prog)
    #init from some pretrain models, to better solve the current task
    if args.init_from_pretrain_model: 
        save_load_io.init_from_pretrain_model(args, exe, train_prog)

    if args.word_emb_init:
        print("start loading word embedding init ...")
        if six.PY2:
            word_emb = np.array(pickle.load(open(args.word_emb_init, 'rb'))).astype('float32')
        else:
            word_emb = np.array(pickle.load(open(args.word_emb_init, 'rb'), encoding="bytes")).astype('float32')
        set_word_embedding(word_emb, place)
        print("finish init word embedding  ...")

    build_strategy = fluid.compiler.BuildStrategy()
    build_strategy.enable_inplace = True

    compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel(
                loss_name=loss.name, build_strategy=build_strategy)

    steps = 0
    begin_time = time.time()

    for epoch_step in range(args.epoch): 
        data_reader.start()
        sum_loss = 0.0
        ce_loss = 0.0
        while True:
            try: 
                steps += 1
                fetch_list = [loss.name]
                outputs = exe.run(compiled_train_prog, fetch_list=fetch_list)
                np_loss = outputs
                sum_loss += np.array(np_loss).mean()
                ce_loss = np.array(np_loss).mean()

                if steps % args.print_steps == 0: 
                    print('epoch: %d, step: %s, avg loss %s' % (epoch_step, steps, sum_loss / args.print_steps))
                    sum_loss = 0.0

                if steps % args.save_steps == 0: 
                    if args.save_checkpoint:
                        save_load_io.save_checkpoint(args, exe, train_prog, "step_" + str(steps))
                    if args.save_param: 
                        save_load_io.save_param(args, exe, train_prog, "step_" + str(steps))
            except fluid.core.EOFException:  
                data_reader.reset()
                break
    
    if args.save_checkpoint: 
        save_load_io.save_checkpoint(args, exe, train_prog, "step_final")
    if args.save_param: 
        save_load_io.save_param(args, exe, train_prog, "step_final")

    def get_cards(): 
        num = 0
        cards = os.environ.get('CUDA_VISIBLE_DEVICES', '')
        if cards != '': 
            num = len(cards.split(","))
        return num

    if args.enable_ce: 
        card_num = get_cards()
        pass_time_cost = time.time() - begin_time
        print("test_card_num", card_num)
        print("kpis\ttrain_duration_card%s\t%s" % (card_num, pass_time_cost))
        print("kpis\ttrain_loss_card%s\t%f" % (card_num, ce_loss))