示例#1
0
    def __init__(self, args, log_id_dir, initial_step_count, rank):
        seed = args.seed \
            if rank == 0 \
            else args.seed + args.nb_env * rank
        print('Worker {} using seed {}'.format(rank, seed))

        # load saved registry classes
        REGISTRY.load_extern_classes(log_id_dir)

        # ENV
        engine = REGISTRY.lookup_engine(args.env)
        env_cls = REGISTRY.lookup_env(args.env)
        mgr_cls = REGISTRY.lookup_manager(args.manager)
        env_mgr = mgr_cls.from_args(args, engine, env_cls, seed=seed)

        # NETWORK
        torch.manual_seed(args.seed)
        device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu")
        output_space = REGISTRY.lookup_output_space(args.actor_worker,
                                                    env_mgr.action_space)
        if args.custom_network:
            net_cls = REGISTRY.lookup_network(args.custom_network)
        else:
            net_cls = ModularNetwork
        net = net_cls.from_args(args, env_mgr.observation_space, output_space,
                                env_mgr.gpu_preprocessor, REGISTRY)
        actor_cls = REGISTRY.lookup_actor(args.actor_worker)
        actor = actor_cls.from_args(args, env_mgr.action_space)
        builder = actor_cls.exp_spec_builder(env_mgr.observation_space,
                                             env_mgr.action_space,
                                             net.internal_space(),
                                             env_mgr.nb_env)
        exp = REGISTRY.lookup_exp(args.exp).from_args(args, builder)

        self.actor = actor
        self.exp = exp.to(device)
        self.nb_step = args.nb_step
        self.env_mgr = env_mgr
        self.nb_env = args.nb_env
        self.network = net.to(device)
        self.device = device
        self.initial_step_count = initial_step_count

        # TODO: this should be set to eval after some number of training steps
        self.network.train()

        # SETUP state variables for run
        self.step_count = self.initial_step_count
        self.global_step_count = self.initial_step_count
        self.ep_rewards = torch.zeros(self.nb_env)
        self.rank = rank

        self.obs = dtensor_to_dev(self.env_mgr.reset(), self.device)
        self.internals = listd_to_dlist([
            self.network.new_internals(self.device) for _ in range(self.nb_env)
        ])
        self.start_time = time()
        self._weights_synced = False
示例#2
0
    def __init__(
            self,
            eval_actor,
            epoch_id,
            logger,
            log_id_dir,
            gpu_id,
            nb_episode,
            start,
            end,
            seed,
            manager
    ):
        self.log_dir_helper = log_dir_helper = LogDirHelper(log_id_dir)
        self.train_args = train_args = log_dir_helper.load_args()
        self.device = device = self._device_from_gpu_id(gpu_id)
        self.logger = logger

        if epoch_id:
            epoch_ids = [epoch_id]
        else:
            epoch_ids = self.log_dir_helper.epochs()
            epoch_ids = filter(lambda eid: eid >= start, epoch_ids)
            if end != -1.:
                epoch_ids = filter(lambda eid: eid <= end, epoch_ids)
            epoch_ids = list(epoch_ids)
        self.epoch_ids = epoch_ids

        engine = REGISTRY.lookup_engine(train_args.env)
        env_cls = REGISTRY.lookup_env(train_args.env)
        mgr_cls = REGISTRY.lookup_manager(manager)
        self.env_mgr = env_mgr = SubProcEnvManager.from_args(
            self.train_args,
            engine,
            env_cls,
            seed=seed,
            nb_env=nb_episode
        )
        if train_args.agent:
            agent = train_args.agent
        else:
            agent = train_args.actor_host
        output_space = REGISTRY.lookup_output_space(
            agent, env_mgr.action_space
        )
        actor_cls = REGISTRY.lookup_actor(eval_actor)
        self.actor = actor_cls.from_args(
            actor_cls.prompt(),
            env_mgr.action_space
        )

        self.network = self._init_network(
            train_args,
            env_mgr.observation_space,
            env_mgr.gpu_preprocessor,
            output_space,
            REGISTRY
        ).to(device)
示例#3
0
    def __init__(
        self,
        args,
        logger,
        log_id_dir,
        initial_step_count,
        local_rank,
        global_rank,
        world_size,
    ):
        seed = (
            args.seed
            if global_rank == 0
            else args.seed + args.nb_env * global_rank
        )
        logger.info("Using {} for rank {} seed.".format(seed, global_rank))

        # ENV
        engine = REGISTRY.lookup_engine(args.env)
        env_cls = REGISTRY.lookup_env(args.env)
        mgr_cls = REGISTRY.lookup_manager(args.manager)
        env_mgr = mgr_cls.from_args(args, engine, env_cls, seed=seed)

        # NETWORK
        torch.manual_seed(args.seed)
        device = torch.device("cuda:{}".format(local_rank))
        output_space = REGISTRY.lookup_output_space(
            args.agent, env_mgr.action_space
        )
        if args.custom_network:
            net_cls = REGISTRY.lookup_network(args.custom_network)
        else:
            net_cls = ModularNetwork
        net = net_cls.from_args(
            args,
            env_mgr.observation_space,
            output_space,
            env_mgr.gpu_preprocessor,
            REGISTRY,
        )
        logger.info("Network parameters: " + str(self.count_parameters(net)))

        def optim_fn(x):
            return torch.optim.RMSprop(x, lr=args.lr, eps=1e-5, alpha=0.99)

        # AGENT
        rwd_norm = REGISTRY.lookup_reward_normalizer(args.rwd_norm).from_args(
            args
        )
        agent_cls = REGISTRY.lookup_agent(args.agent)
        builder = agent_cls.exp_spec_builder(
            env_mgr.observation_space,
            env_mgr.action_space,
            net.internal_space(),
            env_mgr.nb_env,
        )
        agent = agent_cls.from_args(
            args, rwd_norm, env_mgr.action_space, builder
        )

        self.agent = agent
        self.nb_step = args.nb_step
        self.env_mgr = env_mgr
        self.nb_env = args.nb_env
        self.network = net.to(device)
        self.optimizer = optim_fn(self.network.parameters())
        self.device = device
        self.initial_step_count = initial_step_count
        self.log_id_dir = log_id_dir
        self.epoch_len = args.epoch_len
        self.summary_freq = args.summary_freq
        self.logger = logger
        self.summary_writer = SummaryWriter(
            os.path.join(log_id_dir, "rank{}".format(global_rank))
        )
        self.saver = SimpleModelSaver(log_id_dir)
        self.local_rank = local_rank
        self.global_rank = global_rank
        self.world_size = world_size
        self.updater = DistribUpdater(
            self.optimizer,
            self.network,
            args.grad_norm_clip,
            world_size,
            not args.no_divide,
        )

        if args.load_network:
            self.network = self.load_network(self.network, args.load_network)
            logger.info("Reloaded network from {}".format(args.load_network))
        if args.load_optim:
            self.optimizer = self.load_optim(self.optimizer, args.load_optim)
            logger.info("Reloaded optimizer from {}".format(args.load_optim))

        self.network.train()
示例#4
0
    def __init__(self, args, logger, log_id_dir, initial_step_count):
        # ENV
        engine = REGISTRY.lookup_engine(args.env)
        env_cls = REGISTRY.lookup_env(args.env)
        mgr_cls = REGISTRY.lookup_manager(args.manager)
        env_mgr = mgr_cls.from_args(args, engine, env_cls)

        # NETWORK
        torch.manual_seed(args.seed)
        if torch.cuda.is_available() and args.gpu_id >= 0:
            device = torch.device("cuda:{}".format(args.gpu_id))
            torch.backends.cudnn.benchmark = True
        else:
            device = torch.device("cpu")
        output_space = REGISTRY.lookup_output_space(args.agent,
                                                    env_mgr.action_space)
        if args.custom_network:
            net_cls = REGISTRY.lookup_network(args.custom_network)
        else:
            net_cls = ModularNetwork
        net = net_cls.from_args(
            args,
            env_mgr.gpu_preprocessor.observation_space,
            output_space,
            env_mgr.gpu_preprocessor,
            REGISTRY,
        )
        logger.info("Network parameters: " + str(self.count_parameters(net)))

        def optim_fn(x):
            if args.optim == "RMSprop":
                return torch.optim.RMSprop(x, lr=args.lr, eps=1e-5, alpha=0.99)
            elif args.optim == "Adam":
                return torch.optim.Adam(x, lr=args.lr, eps=1e-5)

        def warmup_schedule(back_step):
            return back_step / args.warmup if back_step < args.warmup else 1.0

        # AGENT
        rwd_norm = REGISTRY.lookup_reward_normalizer(
            args.rwd_norm).from_args(args)
        agent_cls = REGISTRY.lookup_agent(args.agent)
        builder = agent_cls.exp_spec_builder(
            env_mgr.observation_space,
            env_mgr.action_space,
            net.internal_space(),
            env_mgr.nb_env,
        )
        agent = agent_cls.from_args(args, rwd_norm, env_mgr.action_space,
                                    builder)

        self.agent = agent.to(device)
        self.nb_step = args.nb_step
        self.env_mgr = env_mgr
        self.nb_env = args.nb_env
        self.network = net.to(device)
        self.optimizer = optim_fn(self.network.parameters())
        self.scheduler = LambdaLR(self.optimizer, warmup_schedule)
        self.device = device
        self.initial_step_count = initial_step_count
        self.log_id_dir = log_id_dir
        self.epoch_len = args.epoch_len
        self.summary_freq = args.summary_freq
        self.logger = logger
        self.summary_writer = SummaryWriter(log_id_dir)
        self.saver = SimpleModelSaver(log_id_dir)
        self.updater = LocalUpdater(self.optimizer, self.network,
                                    args.grad_norm_clip)

        if args.load_network:
            self.network = self.load_network(self.network, args.load_network)
            logger.info("Reloaded network from {}".format(args.load_network))
        if args.load_optim:
            self.optimizer = self.load_optim(self.optimizer, args.load_optim)
            logger.info("Reloaded optimizer from {}".format(args.load_optim))

        self.network.train()