示例#1
0
 def build_evaluator(cls, cfg, dataset_name, output_folder=None):
     """
     Create evaluator(s) for a given dataset.
     This uses the special metadata "evaluator_type" associated with each builtin dataset.
     For your own dataset, you can simply create an evaluator manually in your
     script and do not have to worry about the hacky if-else logic here.
     """
     if output_folder is None:
         output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
     evaluator_list = []
     evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
     if evaluator_type in ["sem_seg", "coco_panoptic_seg"]:
         evaluator_list.append(
             SemSegEvaluator(
                 dataset_name,
                 distributed=True,
                 num_classes=cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,
                 ignore_label=cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
                 output_dir=output_folder,
             ))
     if evaluator_type in ["coco", "coco_panoptic_seg"]:
         evaluator_list.append(
             COCOEvaluator(dataset_name, cfg, True, output_folder))
     if evaluator_type == "coco_panoptic_seg":
         evaluator_list.append(
             COCOPanopticEvaluator(dataset_name, output_folder))
     if evaluator_type == "cityscapes_instance":
         assert (
             torch.cuda.device_count() >= comm.get_rank()
         ), "CityscapesEvaluator currently do not work with multiple machines."
         return CityscapesInstanceEvaluator(dataset_name)
     if evaluator_type == "pascal_voc":
         return PascalVOCDetectionEvaluator(dataset_name)
     if evaluator_type == "lvis":
         return LVISEvaluator(dataset_name, cfg, True, output_folder)
     if evaluator_type == "text":
         return TextEvaluator(dataset_name, cfg, True, output_folder)
     if len(evaluator_list) == 0:
         raise NotImplementedError(
             "no Evaluator for the dataset {} with the type {}".format(
                 dataset_name, evaluator_type))
     if len(evaluator_list) == 1:
         return evaluator_list[0]
     return DatasetEvaluators(evaluator_list)
示例#2
0
 def build_evaluator(cls, cfg, dataset_name, output_folder=None):
     """
     Create evaluator(s) for a given dataset.
     This uses the special metadata "evaluator_type" associated with each builtin dataset.
     For your own dataset, you can simply create an evaluator manually in your
     script and do not have to worry about the hacky if-else logic here.
     """
     if output_folder is None:
         model_name = osp.basename(cfg.MODEL.WEIGHTS).split(".")[0]
         output_folder = osp.join(
             cfg.OUTPUT_DIR,
             "inference_{}/{}".format(model_name, dataset_name))
     evaluator_list = []
     evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
     if evaluator_type in ["sem_seg", "coco_panoptic_seg"]:
         evaluator_list.append(
             SemSegEvaluator(
                 dataset_name,
                 distributed=True,
                 num_classes=cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,
                 ignore_label=cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
                 output_dir=output_folder,
             ))
     if evaluator_type in ["coco", "coco_panoptic_seg", "coco_bop"]:
         evaluator_list.append(
             MyCOCOEvaluator(dataset_name, cfg, True, output_folder))
         # evaluator_list.append(COCOEvaluator(dataset_name, cfg, True, output_folder))
     if evaluator_type == "coco_panoptic_seg":
         evaluator_list.append(
             COCOPanopticEvaluator(dataset_name, output_folder))
     if evaluator_type == "pascal_voc":
         return PascalVOCDetectionEvaluator(dataset_name)
     if evaluator_type == "lvis":
         return LVISEvaluator(dataset_name, cfg, True, output_folder)
     if evaluator_type == "text":
         return TextEvaluator(dataset_name, cfg, True, output_folder)
     if len(evaluator_list) == 0:
         raise NotImplementedError(
             "no Evaluator for the dataset {} with the type {}".format(
                 dataset_name, evaluator_type))
     if len(evaluator_list) == 1:
         return evaluator_list[0]
     return DatasetEvaluators(evaluator_list)