def func_main(fe): df = pd.read_csv('Datasets/GermanCredit.csv') model_job = load('adf_baseline/TestCases/NBCredit.joblib') #Calling the random testing approach to test strong group monotonicity fair_score = symbolic_generation.sg_main(model_job, fe) return fair_score
def func_main(sensitive_param): #Reading the dataset X, Y, shape, nb_classes = credit.credit_data() model = DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, random_state=None, splitter='best') #Fitting the model with the dataset model = model.fit(X, Y) #Computing time start_time = time.time() #Calling the random testing approach to test strong group monotonicity model_job = load('adf_baseline/TestCases/DecTreeCredit.joblib') fair_score = symbolic_generation.sg_main(model_job, sensitive_param) return fair_score
def func_main(sensitive_param): #Reading the dataset X, Y, shape, nb_classes = census.census_data() model = LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=10, solver='lbfgs', max_iter=5000, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None) #Fitting the model with the dataset model = model.fit(X, Y) #Computing time start_time = time.time() #Calling the random testing approach to test strong group monotonicity model_job = load('adf_baseline/TestCases/LogRegAdult.joblib') fair_score = symbolic_generation.sg_main(model_job, sensitive_param) return fair_score
def func_main(sensitive_param): #Reading the dataset X, Y, shape, nb_classes = credit.credit_data() model = MultinomialNB() #Fitting the model with the dataset model = model.fit(X, Y) #Computing time start_time = time.time() #Calling the random testing approach to test strong group monotonicity model_job = load('adf_baseline/TestCases/NBAdult.joblib') fair_score = symbolic_generation.sg_main(model_job, sensitive_param) return fair_score