def coint(y1, y2, regression="c"): """ This is a simple cointegration test. Uses unit-root test on residuals to test for cointegrated relationship See Hamilton (1994) 19.2 Parameters ---------- y1 : array_like, 1d first element in cointegrating vector y2 : array_like remaining elements in cointegrating vector c : str {'c'} Included in regression * 'c' : Constant Returns ------- coint_t : float t-statistic of unit-root test on residuals pvalue : float MacKinnon's approximate p-value based on MacKinnon (1994) crit_value : dict Critical values for the test statistic at the 1 %, 5 %, and 10 % levels. Notes ----- The Null hypothesis is that there is no cointegration, the alternative hypothesis is that there is cointegrating relationship. If the pvalue is small, below a critical size, then we can reject the hypothesis that there is no cointegrating relationship. P-values are obtained through regression surface approximation from MacKinnon 1994. References ---------- MacKinnon, J.G. 1994. "Approximate asymptotic distribution functions for unit-root and cointegration tests. `Journal of Business and Economic Statistics` 12, 167-76. """ regression = regression.lower() if regression not in ['c', 'nc', 'ct', 'ctt']: raise ValueError("regression option %s not understood") % regression y1 = np.asarray(y1) y2 = np.asarray(y2) if regression == 'c': y2 = add_constant(y2, prepend=False) st1_resid = OLS(y1, y2).fit().resid # stage one residuals lgresid_cons = add_constant(st1_resid[0:-1], prepend=False) uroot_reg = OLS(st1_resid[1:], lgresid_cons).fit() coint_t = (uroot_reg.params[0] - 1) / uroot_reg.bse[0] pvalue = mackinnonp(coint_t, regression="c", N=2, lags=None) crit_value = mackinnoncrit(N=1, regression="c", nobs=len(y1)) return coint_t, pvalue, crit_value
def adfuller(x, maxlag=None, regression="c", autolag='AIC', store=False, regresults=False): ''' Augmented Dickey-Fuller unit root test The Augmented Dickey-Fuller test can be used to test for a unit root in a univariate process in the presence of serial correlation. Parameters ---------- x : array_like, 1d data series maxlag : int Maximum lag which is included in test, default 12*(nobs/100)^{1/4} regression : str {'c','ct','ctt','nc'} Constant and trend order to include in regression * 'c' : constant only (default) * 'ct' : constant and trend * 'ctt' : constant, and linear and quadratic trend * 'nc' : no constant, no trend autolag : {'AIC', 'BIC', 't-stat', None} * if None, then maxlag lags are used * if 'AIC' (default) or 'BIC', then the number of lags is chosen to minimize the corresponding information criterium * 't-stat' based choice of maxlag. Starts with maxlag and drops a lag until the t-statistic on the last lag length is significant at the 95 % level. store : bool If True, then a result instance is returned additionally to the adf statistic (default is False) regresults : bool If True, the full regression results are returned (default is False) Returns ------- adf : float Test statistic pvalue : float MacKinnon's approximate p-value based on MacKinnon (1994) usedlag : int Number of lags used. nobs : int Number of observations used for the ADF regression and calculation of the critical values. critical values : dict Critical values for the test statistic at the 1 %, 5 %, and 10 % levels. Based on MacKinnon (2010) icbest : float The maximized information criterion if autolag is not None. regresults : RegressionResults instance The resstore : (optional) instance of ResultStore an instance of a dummy class with results attached as attributes Notes ----- The null hypothesis of the Augmented Dickey-Fuller is that there is a unit root, with the alternative that there is no unit root. If the pvalue is above a critical size, then we cannot reject that there is a unit root. The p-values are obtained through regression surface approximation from MacKinnon 1994, but using the updated 2010 tables. If the p-value is close to significant, then the critical values should be used to judge whether to accept or reject the null. The autolag option and maxlag for it are described in Greene. Examples -------- see example script References ---------- Greene Hamilton P-Values (regression surface approximation) MacKinnon, J.G. 1994. "Approximate asymptotic distribution functions for unit-root and cointegration tests. `Journal of Business and Economic Statistics` 12, 167-76. Critical values MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests." Queen's University, Dept of Economics, Working Papers. Available at http://ideas.repec.org/p/qed/wpaper/1227.html ''' if regresults: store = True trenddict = {None: 'nc', 0: 'c', 1: 'ct', 2: 'ctt'} if regression is None or isinstance(regression, int): regression = trenddict[regression] regression = regression.lower() if regression not in ['c', 'nc', 'ct', 'ctt']: raise ValueError("regression option %s not understood") % regression x = np.asarray(x) nobs = x.shape[0] if maxlag is None: #from Greene referencing Schwert 1989 maxlag = int(np.ceil(12. * np.power(nobs / 100., 1 / 4.))) xdiff = np.diff(x) xdall = lagmat(xdiff[:, None], maxlag, trim='both', original='in') nobs = xdall.shape[0] # pylint: disable=E1103 xdall[:, 0] = x[-nobs - 1:-1] # replace 0 xdiff with level of x xdshort = xdiff[-nobs:] if store: resstore = ResultsStore() if autolag: if regression != 'nc': fullRHS = add_trend(xdall, regression, prepend=True) else: fullRHS = xdall startlag = fullRHS.shape[1] - xdall.shape[1] + 1 # 1 for level # pylint: disable=E1103 #search for lag length with smallest information criteria #Note: use the same number of observations to have comparable IC #aic and bic: smaller is better if not regresults: icbest, bestlag = _autolag(OLS, xdshort, fullRHS, startlag, maxlag, autolag) else: icbest, bestlag, alres = _autolag(OLS, xdshort, fullRHS, startlag, maxlag, autolag, regresults=regresults) resstore.autolag_results = alres bestlag -= startlag # convert to lag not column index #rerun ols with best autolag xdall = lagmat(xdiff[:, None], bestlag, trim='both', original='in') nobs = xdall.shape[0] # pylint: disable=E1103 xdall[:, 0] = x[-nobs - 1:-1] # replace 0 xdiff with level of x xdshort = xdiff[-nobs:] usedlag = bestlag else: usedlag = maxlag icbest = None if regression != 'nc': resols = OLS(xdshort, add_trend(xdall[:, :usedlag + 1], regression)).fit() else: resols = OLS(xdshort, xdall[:, :usedlag + 1]).fit() adfstat = resols.tvalues[0] # adfstat = (resols.params[0]-1.0)/resols.bse[0] # the "asymptotically correct" z statistic is obtained as # nobs/(1-np.sum(resols.params[1:-(trendorder+1)])) (resols.params[0] - 1) # I think this is the statistic that is used for series that are integrated # for orders higher than I(1), ie., not ADF but cointegration tests. # Get approx p-value and critical values pvalue = mackinnonp(adfstat, regression=regression, N=1) critvalues = mackinnoncrit(N=1, regression=regression, nobs=nobs) critvalues = {"1%" : critvalues[0], "5%" : critvalues[1], "10%" : critvalues[2]} if store: resstore.resols = resols resstore.maxlag = maxlag resstore.usedlag = usedlag resstore.adfstat = adfstat resstore.critvalues = critvalues resstore.nobs = nobs resstore.H0 = ("The coefficient on the lagged level equals 1 - " "unit root") resstore.HA = "The coefficient on the lagged level < 1 - stationary" resstore.icbest = icbest return adfstat, pvalue, critvalues, resstore else: if not autolag: return adfstat, pvalue, usedlag, nobs, critvalues else: return adfstat, pvalue, usedlag, nobs, critvalues, icbest
def adfuller(x, maxlag=None, regression="c", autolag='AIC', store=False, regresults=False): '''Augmented Dickey-Fuller unit root test The Augmented Dickey-Fuller test can be used to test for a unit root in a univariate process in the presence of serial correlation. Parameters ---------- x : array_like, 1d data series maxlag : int Maximum lag which is included in test, default 12*(nobs/100)^{1/4} regression : str {'c','ct','ctt','nc'} Constant and trend order to include in regression * 'c' : constant only * 'ct' : constant and trend * 'ctt' : constant, and linear and quadratic trend * 'nc' : no constant, no trend autolag : {'AIC', 'BIC', 't-stat', None} * if None, then maxlag lags are used * if 'AIC' or 'BIC', then the number of lags is chosen to minimize the corresponding information criterium * 't-stat' based choice of maxlag. Starts with maxlag and drops a lag until the t-statistic on the last lag length is significant at the 95 % level. store : bool If True, then a result instance is returned additionally to the adf statistic regresults : bool If True, the full regression results are returned. Returns ------- adf : float Test statistic pvalue : float MacKinnon's approximate p-value based on MacKinnon (1994) usedlag : int Number of lags used. nobs : int Number of observations used for the ADF regression and calculation of the critical values. critical values : dict Critical values for the test statistic at the 1 %, 5 %, and 10 % levels. Based on MacKinnon (2010) icbest : float The maximized information criterion if autolag is not None. regresults : RegressionResults instance The resstore : (optional) instance of ResultStore an instance of a dummy class with results attached as attributes Notes ----- The null hypothesis of the Augmented Dickey-Fuller is that there is a unit root, with the alternative that there is no unit root. If the pvalue is above a critical size, then we cannot reject that there is a unit root. The p-values are obtained through regression surface approximation from MacKinnon 1994, but using the updated 2010 tables. If the p-value is close to significant, then the critical values should be used to judge whether to accept or reject the null. The autolag option and maxlag for it are described in Greene. Examples -------- see example script References ---------- Greene Hamilton P-Values (regression surface approximation) MacKinnon, J.G. 1994. "Approximate asymptotic distribution functions for unit-root and cointegration tests. `Journal of Business and Economic Statistics` 12, 167-76. Critical values MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests." Queen's University, Dept of Economics, Working Papers. Available at http://ideas.repec.org/p/qed/wpaper/1227.html ''' if regresults: store = True trenddict = {None: 'nc', 0: 'c', 1: 'ct', 2: 'ctt'} if regression is None or isinstance(regression, int): regression = trenddict[regression] regression = regression.lower() if regression not in ['c', 'nc', 'ct', 'ctt']: raise ValueError("regression option %s not understood") % regression x = np.asarray(x) nobs = x.shape[0] if maxlag is None: #from Greene referencing Schwert 1989 maxlag = int(np.ceil(12. * np.power(nobs / 100., 1 / 4.))) xdiff = np.diff(x) xdall = lagmat(xdiff[:, None], maxlag, trim='both', original='in') nobs = xdall.shape[0] # pylint: disable=E1103 xdall[:, 0] = x[-nobs - 1:-1] # replace 0 xdiff with level of x xdshort = xdiff[-nobs:] if store: resstore = ResultsStore() if autolag: if regression != 'nc': fullRHS = add_trend(xdall, regression, prepend=True) else: fullRHS = xdall startlag = fullRHS.shape[1] - xdall.shape[1] + 1 # 1 for level # pylint: disable=E1103 #search for lag length with smallest information criteria #Note: use the same number of observations to have comparable IC #aic and bic: smaller is better if not regresults: icbest, bestlag = _autolag(OLS, xdshort, fullRHS, startlag, maxlag, autolag) else: icbest, bestlag, alres = _autolag(OLS, xdshort, fullRHS, startlag, maxlag, autolag, regresults=regresults) resstore.autolag_results = alres bestlag -= startlag #convert to lag not column index #rerun ols with best autolag xdall = lagmat(xdiff[:, None], bestlag, trim='both', original='in') nobs = xdall.shape[0] # pylint: disable=E1103 xdall[:, 0] = x[-nobs - 1:-1] # replace 0 xdiff with level of x xdshort = xdiff[-nobs:] usedlag = bestlag else: usedlag = maxlag icbest = None if regression != 'nc': resols = OLS(xdshort, add_trend(xdall[:, :usedlag + 1], regression)).fit() else: resols = OLS(xdshort, xdall[:, :usedlag + 1]).fit() adfstat = resols.tvalues[0] # adfstat = (resols.params[0]-1.0)/resols.bse[0] # the "asymptotically correct" z statistic is obtained as # nobs/(1-np.sum(resols.params[1:-(trendorder+1)])) (resols.params[0] - 1) # I think this is the statistic that is used for series that are integrated # for orders higher than I(1), ie., not ADF but cointegration tests. # Get approx p-value and critical values pvalue = mackinnonp(adfstat, regression=regression, N=1) critvalues = mackinnoncrit(N=1, regression=regression, nobs=nobs) critvalues = { "1%": critvalues[0], "5%": critvalues[1], "10%": critvalues[2] } if store: resstore.resols = resols resstore.maxlag = maxlag resstore.usedlag = usedlag resstore.adfstat = adfstat resstore.critvalues = critvalues resstore.nobs = nobs resstore.H0 = "The coefficient on the lagged level equals 1 - unit root" resstore.HA = "The coefficient on the lagged level < 1 - stationary" resstore.icbest = icbest return adfstat, pvalue, critvalues, resstore else: if not autolag: return adfstat, pvalue, usedlag, nobs, critvalues else: return adfstat, pvalue, usedlag, nobs, critvalues, icbest