示例#1
0
def process_file(args):
    with open(args.config) as config_data:
        config = json.load(config_data)
    print(config)
    filename = args.instream
    print("Opening:", filename)
    if not args.nompi:
        fr = adios2.open(filename, "r", MPI.COMM_SELF, "adios2.xml",
                         "TAUProfileOutput")
    else:
        fr = adios2.open(filename, "r", "adios2.xml", "TAUProfileOutput")
    # Get the attributes (simple name/value pairs)
    attr_info = fr.available_attributes()
    # Get the unique host names from the attributes
    num_hosts = get_num_hosts(attr_info)
    cur_step = 0
    # Iterate over the steps
    for fr_step in fr:
        # track current step
        cur_step = fr_step.current_step()
        print(filename, "Step = ", cur_step)
        for f in config["figures"]:
            print(f["name"])
            if "Timer" in f["name"]:
                build_topX_timers_dataframe(fr_step, cur_step, f)
            elif f["granularity"] == "node":
                build_per_host_dataframe(fr_step, cur_step, num_hosts, f)
            else:
                build_per_rank_dataframe(fr_step, cur_step, f)
示例#2
0
    def test_single_step(self):

        # Create a mpl figure
        x = np.arange(0.0, 2, 0.01)
        y1 = np.sin(2 * np.pi * x)
        y2 = 1.2 * np.sin(4 * np.pi * x)

        fig, (ax1, ax2, ax3) = plt.subplots(3, 1, sharex=True)

        ax1.fill_between(x, 0, y1)
        ax1.set_ylabel('between y1 and 0')

        ax2.fill_between(x, y1, 1)
        ax2.set_ylabel('between y1 and 1')

        ax3.fill_between(x, y1, y2)
        ax3.set_ylabel('between y1 and y2')
        ax3.set_xlabel('x')

        #        # load some image data
        #        img = Image.open ("{}/images/simple-3x3-1.png".format(os.path.dirname(os.path.abspath(__file__)))).convert("RGB")
        #        pngPixels = list(img.getdata())

        # test writing
        with adios2.open("test_mpl.bp", "w") as fh:
            plxr.write_png_image_from_matplotlib_hl(fh, fig, 'test_image')

        # test reading
        with adios2.open("test_mpl.bp", "r") as fh:
            for ad_step in fh:
                rimg = plxr.read_image_hl(fh, 'test_image')
                readPixels = list(rimg.getdata())
示例#3
0
    def test_multiple_steps(self):

        # load some image data
        img1 = Image.open("{}/images/simple-3x3-1.png".format(
            os.path.dirname(os.path.abspath(__file__)))).convert("RGB")
        pngPixels1 = list(img1.getdata())
        img2 = Image.open("{}/images/simple-3x3-2.png".format(
            os.path.dirname(os.path.abspath(__file__)))).convert("RGB")
        pngPixels2 = list(img2.getdata())
        img3 = Image.open("{}/images/simple-3x3-3.png".format(
            os.path.dirname(os.path.abspath(__file__)))).convert("RGB")
        pngPixels3 = list(img3.getdata())
        img4 = Image.open("{}/images/simple-3x3-4.png".format(
            os.path.dirname(os.path.abspath(__file__)))).convert("RGB")
        pngPixels4 = list(img4.getdata())

        # test writing
        with adios2.open("test_multiple.bp", "w") as fh:
            plxr.write_png_image_hl(fh, img1, 'test_image', end_step=True)
            plxr.write_png_image_hl(fh, img2, 'test_image', end_step=True)
            plxr.write_png_image_hl(fh, img3, 'test_image', end_step=True)
            plxr.write_png_image_hl(fh, img4, 'test_image', end_step=True)

        # test reading
        readPixels = []
        with adios2.open("test_multiple.bp", "r") as fh:
            for ad_step in fh:
                rimg = plxr.read_image_hl(ad_step, 'test_image')
                readPixels.append(list(rimg.getdata()))

            # Compare pixels to original
            self.assertEqual(pngPixels1, readPixels[0])
            self.assertEqual(pngPixels2, readPixels[1])
            self.assertEqual(pngPixels3, readPixels[2])
            self.assertEqual(pngPixels4, readPixels[3])
示例#4
0
def process_file(args):
    fontsize = 12
    filename = args.instream
    print("Opening:", filename)
    if not args.nompi:
        fr = adios2.open(filename, "r", MPI.COMM_SELF, "adios2.xml",
                         "TAUProfileOutput")
    else:
        fr = adios2.open(filename, "r", "adios2.xml", "TAUProfileOutput")
    initialize_globals()
    cur_step = 0
    for fr_step in fr:
        # track current step
        cur_step = fr_step.current_step()
        print(filename, "Step = ", cur_step)
        # inspect variables in current step
        vars_info = fr_step.available_variables()
        #dumperiod_valuesars(vars_info)
        get_utilization(True, fr_step, vars_info, cpu_components,
                        previous_mean, previous_count, current_period,
                        period_values)
        get_utilization(False, fr_step, vars_info, mem_components,
                        previous_mean, previous_count, current_period,
                        period_values)
        get_utilization(False, fr_step, vars_info, io_components,
                        previous_mean, previous_count, current_period,
                        period_values)
        top5 = get_top5(fr_step, vars_info)

        x = range(0, cur_step + 1)
        plot_utilization(args, x, fontsize, cur_step, top5)
示例#5
0
def CompressZfp2D(rate):

    fname = "BPWRZfp2D_" + str(rate) + "_py.bp"
    Nx = 100
    Ny = 50
    NSteps = 2

    # initialize values
    r32s = np.zeros([Ny, Nx], np.float32)
    r64s = np.zeros([Ny, Nx], np.float64)

    value_ji = 0.
    for j in range(0, Ny):
        for i in range(0, Nx):
            r32s[j][i] = value_ji
            r64s[j][i] = value_ji
            value_ji += 1.

    # set global dimensions
    # MPI
    comm = MPI.COMM_WORLD
    rank = comm.Get_rank()
    size = comm.Get_size()

    shape = [Ny * size, Nx]
    start = [Ny * rank, 0]
    count = [Ny, Nx]

    # writer
    with adios2.open(fname, "w", comm) as fw:

        for s in range(0, NSteps):
            fw.write("r32", r32s, shape, start, count, [('zfp', {
                'accuracy': str(rate)
            })])
            fw.write("r64",
                     r64s,
                     shape,
                     start,
                     count, [('zfp', {
                         'accuracy': str(rate)
                     })],
                     end_step=True)

    # reader
    with adios2.open(fname, "r", comm) as fr:

        for fstep in fr:

            in_r32s = fstep.read("r32", start, count)
            in_r64s = fstep.read("r64", start, count)

            for j in range(0, Ny):
                for i in range(0, Nx):
                    assert (abs(r32s[j][i] - in_r32s[j][i]) < 1E-4)
                    assert (abs(r64s[j][i] - in_r64s[j][i]) < 1E-4)
    def test_read_strings_all_steps(self):
        fileName = 'string_test_all.bp'
        with adios2.open(fileName, "w") as fh:
            for i in range(N_STEPS):
                fh.write("string_variable", "written {}".format(i))
                fh.end_step()

        with adios2.open(fileName, "r") as fh:
            n = fh.steps()
            name = "string_variable"
            result = fh.read_string(name, 0, n)
            expected_str = ["written {}".format(i) for i in range(n)]
            self.assertEqual(result, expected_str)
示例#7
0
def process_file(args):
    with open(args.config) as config_data:
        config = json.load(config_data)

    # make the output directory
    if "SVG output directory" not in config or config["SVG output directory"] == ".":
        config["SVG output directory"] = os.getcwd()
    else:
        Path(config["SVG output directory"]).mkdir(parents=True, exist_ok=True)
    
    if "Timestep for filename" not in config:
        config["Timestep for filename"] = "default"
    
    for f in config["figures"]:
        if "SVG output directory" not in f or f["SVG output directory"] == ".":
            f["SVG output directory"] = config["SVG output directory"]
        else:
            Path(config["SVG output directory"]).mkdir(parents=True, exist_ok=True)
        if "Timestep for filename" not in f:
             f["Timestep for filename"] = config["Timestep for filename"]
            
    filename = args.instream
    print ("Opening:", filename)
    if not args.nompi:
        fr = adios2.open(filename, "r", MPI.COMM_SELF, "adios2.xml", "TAUProfileOutput")
    else:
        fr = adios2.open(filename, "r", config["ADIOS2 config file"], "TAUProfileOutput")
    # Get the attributes (simple name/value pairs)
    attr_info = fr.available_attributes()
    # Get the unique host names from the attributes
    num_hosts = get_num_hosts(attr_info)
    cur_step = 0
    # Iterate over the steps
    for fr_step in fr:
        begin_time = time.time()
        # track current step
        cur_step = fr_step.current_step()
        print(filename, "Step = ", cur_step)
        for f in config["figures"]:
            print(f["name"])
            if "Timer" in f["name"]:
                build_topX_timers_dataframe(fr_step, cur_step, f)
            elif f["granularity"] == "node":
                valid_ranks = get_valid_ranks(attr_info)
                build_per_host_dataframe(fr_step, cur_step, num_hosts, valid_ranks, f)
            else:
                build_per_rank_dataframe(fr_step, cur_step, f)
        fr.end_step()
        total_time = time.time() - begin_time
        print(f"Processed step in {total_time} seconds", flush=True)
示例#8
0
def open_files(input_file, output_file, parallel=False, diskless=False):
    if parallel:
        adios2f = adios2.open(input_file, "r", comm=MPI.COMM_WORLD)
    else:
        adios2f = adios2.open(input_file, "r")
    netcdff = Dataset(
        output_file,
        "w",
        format="NETCDF4",
        parallel=parallel,
        diskless=diskless,
    )
    netcdff.set_fill_off()
    return (adios2f, netcdff)
示例#9
0
 def setUp(self):
     total_steps = 10
     with adios2.open(TESTDATA_FILENAME, "w", comm) as fh:
         for i in range(total_steps):
             fh.write("step", np.full((Nx), i, dtype=np.int32), shape,
                      start, count)
             fh.end_step()
示例#10
0
        def __init__(self, istart, iend, istep, midwidth, mesh, f0):
            # setup flux surface average

            self.midwidth = midwidth
            self.istart = istart
            self.iend = iend
            self.istep = istep

            #setup flux surface average matrix

            # read whole data
            for i in range(istart, iend, istep):
                # 3d file name
                filename = "xgc.3d.%5.5d.bp" % (i)

                #read data
                with adios2.open(filename, "r") as f:
                    dpot = f.read("dpot")
                    dden = f.read("eden")

                    nzeta = dpot.shape[0]
                    print(nzeta)  #check correct number
                    dpotn0 = np.mean(dpot, axis=0)
                    dpot = dpot - dpotn0  #numpy broadcasting
                    #toroidal average of (dpot/Te)^2
                    var = np.mean(dpot**2, axis=0) / f0.Te0**2
                    #flux surface average of dpot/Te  (midplane only)

                    #self.dpot_te_sqr=

                    dden = dden - np.mean(dden, axis=0)  # remove n=0 mode
                    var = dpot / f0.Te0 + dden / f0.ne0
                    var = np.mean(var**2, axis=0)  # toroidal average
示例#11
0
 def __init__(self, filename):
     with adios2.open(filename, "r") as self.f:
         #read file and assign it
         self.vars = self.f.available_variables()
         for v in self.vars:
             stc = self.vars[v].get("AvailableStepsCount")
             ct = self.vars[v].get("Shape")
             sgl = self.vars[v].get("SingleValue")
             stc = int(stc)
             if ct != '':
                 ct = int(ct)
                 setattr(
                     self, v,
                     self.f.read(v,
                                 start=[0],
                                 count=[ct],
                                 step_start=0,
                                 step_count=stc))
             elif v != 'gsamples' and v != 'samples':
                 setattr(self, v,
                         self.f.read(
                             v,
                             start=[],
                             count=[],
                             step_start=0,
                             step_count=stc))  #null list for scalar
示例#12
0
 def __getXb(self):
     """
     Collect the offsets of lower left corner of patch.  Offset in number of grid points.  Metadata for entire grid
     """
     with adios2.open(self.path, 'r') as fh:
         patchXb = fh.read('grid::xb')
     return patchXb
示例#13
0
 def __getPatchOffsets(self):
     """
     Collect the global position offsets of patches. Metadata for entire grid
     """
     with adios2.open(self.path, 'r') as fh:
         patchCoordinates = fh.read('grid::off')
     return patchCoordinates
示例#14
0
 def test_GlobalArray(self):
     with adios2.open(filename, 'r') as fh:
         for fh_step in fh:
             t = fh_step.current_step()
             val = fh_step.read("global_array", (0, 1), (2, 3))
             self.assertTrue(np.array_equal(val, global_arrays[t][0:2,
                                                                  1:4]))
示例#15
0
def parse_tau_file(file):
    """
    Parses the tau file in the current location and returns a set of attributes.
    :param file:
    :return:
    """
    attributes = {}
    tau_string_attrs = TAU_EXTRACT_STRING.split(",")
    tau_string_attrs = map(str.strip, tau_string_attrs)

    with adios2.open(file, "r", MPI.COMM_SELF) as tauf:
        for fstep in tauf:
            for key in tau_string_attrs:
                # removing the "Metadata" from the key name
                refactored_key = key if "MetaData" not in key else key.split(':')[-1].lower()
                refactored_key = refactored_key.replace(' ', '_')
                attributes[refactored_key] = fstep.read_attribute_string(key)[0]
            # inspect variables in current step
            step_vars = fstep.available_variables()
            print("Fstep value: {}\n".format(fstep))

            # # print variables information
            for name, info in step_vars.items():
                print("variable_name: " + name)
                for key, value in info.items():
                    print("\t" + key + ": " + value)
                print("\n")

            values = fstep.read("counter_values")[0]
            print(values)
            #print(fstep.read_attribute_string("MetaData:0:0:Hostname"))

    attributes["location"] = str(file)
    return get_attributes(attributes)
    def test_write_read_string_highAPI(self):
        comm = MPI.COMM_WORLD
        theString = 'hello adios'
        bpFilename = 'string_test_highAPI.bp'
        varname = 'mystringvar'

        with adios2.open(bpFilename, "w", comm) as fh:

            for step in range(N_STEPS):
                fh.write(varname, theString + str(step), end_step=True)

        with adios2.open(bpFilename, "r", comm) as fh:
            for fstep in fh:
                step = fstep.current_step()
                result = fstep.read_string(varname)
                self.assertEqual(result, [theString + str(step)])
示例#17
0
 def open(self):
     if self.is_open == False:
         try:
             #print("[Rank ", self.my_rank, "] :","Looking for..", self.inputfile) 
             i = 0
             found = 0
             # Wait until file exists..
             while i < 1:
                 if os.path.isfile(self.inputfile) or os.path.isdir(self.inputfile):
                     #print("[Rank ", self.my_rank, "] :","found file ", self.inputfile)
                     found = 1
                     break
                 elif os.path.isfile(self.inputfile + ".sst"):
                     #print("[Rank ", self.my_rank, "] :","found file ", self.inputfile, ".sst")
                     found = 1
                     break
                 #time.sleep(1)
             #print("[Rank ", self.my_rank, "] :","Found ? ", found) 
             self.conn = adios2.open(self.inputfile, "r", self.mpi_comm, self.eng_name)
             self.is_open = True
         except Exception as ex:
             traceback.print_exc()
             #print("[Rank ", self.my_rank, "] :","Got an exception!!", ex)
             self.is_open = False
     return self.is_open
示例#18
0
 def test_LocalArray(self):
     with adios2.open(filename, 'r') as fh:
         for fh_step in fh:
             t = fh_step.current_step()
             for b in range(n_blocks):
                 val = fh_step.read('local_array', b)
                 self.assertTrue(np.array_equal(val, local_arrays[t][b]))
示例#19
0
    def getPatch(self, coordinates, cellsPerPatch):
        """
        Return all features of particles in patch
        args:
            coordinates (int, int, int): lower left cell index of patch in grid 
            cellsPerPatch [int]: number of cells per grid patch
        
        """
        start, count, idx = self.__toStartCount(coordinates, cellsPerPatch)

        with adios2.open(self.path, 'r') as fh:
            x = fh.read('mprts::mprts::x', start, count).reshape(-1, 1)
            y = fh.read('mprts::mprts::y', start, count).reshape(-1, 1)
            z = fh.read('mprts::mprts::z', start, count).reshape(-1, 1)
            ux = fh.read('mprts::mprts::ux', start, count).reshape(-1, 1)
            uy = fh.read('mprts::mprts::uy', start, count).reshape(-1, 1)
            uz = fh.read('mprts::mprts::uz', start, count).reshape(-1, 1)
            kind = fh.read('mprts::mprts::kind', start, count).reshape(-1, 1)
            qni_wni = fh.read('mprts::mprts::qni_wni', start,
                              count).reshape(-1, 1)

        prts = np.concatenate((x, y, z, ux, uy, uz, kind, qni_wni), axis=1)
        prts = pd.DataFrame(
            prts,
            columns=['x', 'y', 'z', 'ux', 'uy', 'uz', 'kind', 'qni_wni'],
            dtype=np.float32)
        prts[['x', 'y', 'z']] = prts[['x', 'y', 'z']] + self.xb[idx]

        if self.species != -1:
            prts = prts[prts['kind'] == self.species]

        return prts
示例#20
0
    def getPatchMomentum(self, coordinates, cellsPerPatch):
        """
        Return 3D momentum of particles in patch, normalized with mass = 1
        args:
            coordinates (int, int, int): lower left cell index of patch in grid
            cellsPerPatch [int]: number of cells per grid patch
        """
        #convert coordinates to patch index here

        start, count, _ = self.__toStartCount(coordinates, cellsPerPatch)

        with adios2.open(self.path, 'r') as fh:
            ux = fh.read('mprts::mprts::ux', start, count).reshape(-1, 1)
            uy = fh.read('mprts::mprts::uy', start, count).reshape(-1, 1)
            uz = fh.read('mprts::mprts::uz', start, count).reshape(-1, 1)
            kind = fh.read('mprts::mprts::kind', start, count).reshape(-1, 1)

        prts = np.concatenate((ux, uy, uz, kind), axis=1)
        prts = pd.DataFrame(prts,
                            columns=['ux', 'uy', 'uz', 'kind'],
                            dtype=np.float32)
        if self.species != -1:
            prts = prts[prts['kind'] == self.species]

        return prts[['ux', 'uy', 'uz', 'kind']]
示例#21
0
        def __init__(self, expdir=''):
            fname = os.path.join(expdir, 'xgc.mesh.bp')
            print (f"Reading: {fname}")
            with ad2.open(fname, 'r') as f:
                self.nnodes = f.read('n_n').item()
                self.ncells = f.read('n_t').item()
                self.rz = f.read('rz')
                self.conn = f.read('nd_connect_list')
                self.psi = f.read('psi')
                self.psi_surf = f.read('psi_surf')
                self.surf_idx = f.read('surf_idx')
                self.surf_len = f.read('surf_len')
                self.nextnode = f.read('nextnode')

            self.r = self.rz[:,0]
            self.z = self.rz[:,1]

            if len(self.surf_len) == 0:
                print (f"==> Warning: no psi_surf/surf_len/surf_idx in {fname}")
                print (f"==> Warning: Plese check if CONVERT_GRID2 enabled.")

            bl = np.zeros_like(self.nextnode, dtype=bool)
            for i in range(len(self.surf_len)):
                n = self.surf_len[i]
                k = self.surf_idx[i,:n]-1
                for j in k:
                    bl[j] = True

            self.not_in_surf=np.arange(len(self.nextnode))[~bl]
示例#22
0
 def __init__(self, dir):
     self.dir = dir
     self.step = 0
     self._adios_stream = adios2.open(name=f"{dir}/SimulationOutput.bp",
                                      mode="w",
                                      config_file=f"{dir}/adios.xml",
                                      io_in_config_file="SimulationOutput")
     self.stop = False
示例#23
0
        def __init__(self, expdir=''):
            fname = os.path.join(expdir, 'xgc.f0.mesh.bp')
            print(f"Reading: {fname}")
            with ad2.open(fname, 'r') as f:
                self.f0_nmu = f.read('f0_nmu')
                self.f0_nvp = f.read('f0_nvp')
                self.f0_smu_max = f.read('f0_smu_max')
                self.f0_vp_max = f.read('f0_vp_max')
                self.f0_dsmu = f.read('f0_dsmu')
                self.f0_dvp = f.read('f0_dvp')
                self.f0_T_ev = f.read('f0_T_ev')
                self.f0_grid_vol_vonly = f.read('f0_grid_vol_vonly')
                self.nb_curl_nb = f.read('nb_curl_nb')

            self.sml_e_charge = 1.6022E-19  ## electron charge (MKS)
            self.sml_ev2j = self.sml_e_charge

            self.ptl_e_mass_au = 2E-2
            self.ptl_mass_au = 2E0
            self.sml_prot_mass = 1.6720E-27  ## proton mass (MKS)
            self.ptl_mass = [
                self.ptl_e_mass_au * self.sml_prot_mass,
                self.ptl_mass_au * self.sml_prot_mass
            ]

            self.ptl_charge_eu = 1.0  #! charge number
            self.ptl_e_charge_eu = -1.0
            self.ptl_charge = [
                self.ptl_e_charge_eu * self.sml_e_charge,
                self.ptl_charge_eu * self.sml_e_charge
            ]

            ## index: imu, range: [0, f0_nmu]
            self.mu_vol = np.ones(self.f0_nmu + 1)
            self.mu_vol[0] = 0.5
            self.mu_vol[-1] = 0.5

            ## index: ivp, range: [-f0_nvp, f0_nvp]
            self.vp_vol = np.ones(self.f0_nvp * 2 + 1)
            self.vp_vol[0] = 0.5
            self.vp_vol[-1] = 0.5

            #f0_smu_max = 3.0
            #f0_dsmu = f0_smu_max/f0_nmu
            self.mu = (np.arange(self.f0_nmu + 1, dtype=np.float128) *
                       self.f0_dsmu)**2
            self.vp = np.arange(
                -self.f0_nvp, self.f0_nvp + 1, dtype=np.float128) * self.f0_dvp

            ## pre-calculation for f0_diag
            isp = 1
            self.en_th = self.f0_T_ev[isp, :] * self.sml_ev2j
            self.vth2 = self.en_th / self.ptl_mass[isp]
            self.vth = np.sqrt(self.vth2)
            self.f0_grid_vol = self.f0_grid_vol_vonly[isp, :]

            _x, _y = np.meshgrid(self.mu_vol, self.vp_vol)
            self.mu_vp_vol = _x * _y
示例#24
0
    def test_write_read_string_highAPI(self):
        comm = MPI.COMM_WORLD
        theString = 'hello adios'
        bpFilename = 'string_test_highAPI.bp'
        varname = 'mystringvar'
        NSteps = 3

        with adios2.open(bpFilename, "w", comm) as fh:

            for step in range(NSteps):
                fh.write(varname, theString + str(step), end_step=True)

        with adios2.open(bpFilename, "r", comm) as fh:
            for fstep in fh:
                step = fstep.current_step()
                result = fstep.read(varname)
                self.assertEqual("".join([chr(s) for s in result]),
                                 theString + str(step))
示例#25
0
 def __getSizes(self):
     """
     Collect the number of particles assigned to each patch.  Metadata for entire grid
     """
     if ('mprts::mprts::size_by_patch' not in self.columns):
         return 0
     with adios2.open(self.path, 'r') as fh:
         size_by_patch = fh.read('mprts::mprts::size_by_patch')
     return size_by_patch
示例#26
0
def save_spec(results, tstep):
    #TODO: Determine how to use adios2 efficiently instead (and how to read in like normal, e.g. without steps?)
    #np.savez(resultspath+'delta.'+str(tstep).zfill(4)+'.npz',**results)
    with adios2.open(
            cfg["resultspath"] + 'delta.' + str(tstep).zfill(4) + '.bp',
            'w') as fw:
        for key in results.keys():
            fw.write(key, results[key], results[key].shape,
                     [0] * len(results[key].shape), results[key].shape)
示例#27
0
    async def _apply_smoother(self, hess: bool):
        import adios2

        names = []

        if hess and self.precondition:
            src = 'hess_vel_raw.bp'
            dst = 'hess_vel_smooth.bp'
            cmd = f'xconvert_hessian kernels_raw.bp DATABASES_MPI/solver_data.bp hess_vel_raw.bp {self.precondition}'

            await self.mpiexec(getpath('adios', 'bin', cmd), getsize(self), 1,
                               0, 'adios')

        else:
            src = 'kernels_raw.bp'
            dst = 'hessian_smooth.bp' if hess else 'kernels_smooth.bp'

        # get the names of the kernels to be smoothed
        with adios2.open(self.abs(src), 'r') as fh:  # type: ignore
            pf = '_crust_mantle/array'

            for fstep in fh:
                step_vars = fstep.available_variables()

                for name in step_vars:
                    if name.endswith(pf):
                        name = name.split(pf)[0]

                        if name.startswith('hess_'):
                            if hess:
                                names.append(name)

                        else:
                            if not hess:
                                names.append(name)

        # save the number of kernels being smoothed for probe_smoother
        kind = 'smooth_' + ('hess' if hess else 'kl')
        cache[kind] = len(names)

        # get the command to call smoother
        cmd = 'bin/xsmooth_laplacian_sem_adios'
        radius = self.smooth_hessian if hess else self.smooth_kernels

        if isinstance(radius, list):
            radius = max(radius[1], radius[0] * radius[2]**self.iteration)

        kl = ','.join(names)

        await self.mpiexec(
            f'{cmd} {radius} {radius} {kl} {src} DATABASES_MPI/ {dst} > OUTPUT_FILES/{kind}.txt',
            getsize(self), 1, 0, 'smooth_kernels')

        # reset status
        del cache[kind]
示例#28
0
 def __init__(self, expdir='', step=None):
     if step is None:
         return
     fname = os.path.join(expdir, 'restart_dir/xgc.f0.%05d.bp'%step)
     print (f"Reading: {fname}")
     with ad2.open(fname, 'r') as f:
         self.E_rho_ff = f.read('E_rho_ff') # (nphi,nnodes,3,2,3)
         self.pot_rho_ff = f.read('pot_rho_ff') # (nphi,nnodes,3,2)
         self.pot0 = f.read('pot0') # (nphi,nnodes)
     if len(self.E_rho_ff) == 0:
         print (f"==> Warning: no E_rho_ff/pot_rho_ff/pot0 data in {fname}")
         print (f"==> Warning: Plese check if XGC_F_COUPLING enabled.")
示例#29
0
def process_file(args):
    fontsize = 12
    filename = args.instream
    print("Opening:", filename)
    if not args.nompi:
        fr = adios2.open(filename, "r", MPI.COMM_SELF, "adios2.xml",
                         "TAUProfileOutput")
    else:
        fr = adios2.open(filename, "r", "adios2.xml", "TAUProfileOutput")
    #num_threads = fr[0].available_variables()["num_threads"]["max"]
    try:
        with open("monitor_config.JSON") as config_file:
            settings = json.load(config_file)
            print("custom settings loaded")
    except IOError:
        settings = DEFAULT
        print("default settings loaded")
    num_ranks = int(fr[0]["num_threads"]["Shape"].split(',')[0])
    initialize_globals(settings, num_ranks)
    cur_step = 0
    for fr_step in fr:
        # track current step
        cur_step = fr_step.current_step()
        print(filename, "Step = ", cur_step)
        # inspect variables in current step
        vars_info = fr_step.available_variables()
        #dumperiod_valuesars(vars_info)
        get_utilization(True, fr_step, vars_info, cpu_components,
                        previous_mean, previous_count, current_period,
                        period_values)
        get_utilization(False, fr_step, vars_info, mem_components,
                        previous_mean, previous_count, current_period,
                        period_values)
        get_utilization(False, fr_step, vars_info, io_components,
                        previous_mean, previous_count, current_period,
                        period_values)
        top5 = get_top5(fr_step, vars_info)

        x = range(0, cur_step + 1)
        plot_utilization(args, x, fontsize, cur_step, top5, settings)
示例#30
0
def load_simulation_data(data_dir,
                         idx_nn,
                         idx_kk,
                         num_planes=8,
                         X_key_list=[
                             "eden", "iden", "u_e", "u_i", "dpot", "a_par",
                             "apar_res", "pot_res"
                         ]):
    """Load simulation data from a time-step idx_nn and iteration idx_kk.

    Parameters:
    -----------
    data_dir..: Data directory of the simulation
    idx_nn....: time-step index
    idx_kk....: iteration index
    X_key_list: Keys to load as node features
    """

    # Datafile that stores result of the converged iteration
    fname_conv = f"xgc.3d.{idx_nn:05d}.c.npz"
    # Datafile that stores apar_try and dpot_try in iteration k
    fname_iter = f"xgc.3d.{idx_nn:03d}{idx_kk:02d}.npz"

    features_node = {}
    features_target = {}

    with adios2.open(join(data_dir, "xgc.bfield.bp"), "r") as df:
        Bvec = df.read("/node_data[0]/values")
        df.close()
    # Calculate the total magnetic field
    Btotal = np.sqrt(np.sum(Bvec**2.0, axis=1))
    features_node["B"] = np.tile(Btotal,
                                 (num_planes, 1)).T.flatten() / Btotal.max()

    with np.load(join(data_dir, "raw", fname_iter)) as df:
        for key in X_key_list:
            features_node[key] = df[key].T.flatten()
        # Save apar_try and pot_try to calculate the error later
        apar_try = df["apar_try"].T.flatten()
        pot_try = df["pot_try"].T.flatten()

    # Define the error as err:= real_solution - current_iteration
    with np.load(join(data_dir, "raw", fname_conv)) as df:
        features_target["apar_err"] = (df["apar_try"].T.flatten() - apar_try)
        features_target["dpot_err"] = (df["pot_try"].T.flatten() - pot_try)
        # Iterate over keys in X_key_list to ensure the features are ordered correctly
    data_x = np.array([features_node[key] for key in ["B"] + X_key_list]).T

    data_y = np.array(
        [features_target["apar_err"], features_target["dpot_err"]]).T

    return (data_x, data_y)