def minimal_oil(): oil = Oil('XXXXX') oil.metadata.name = "Minimal Oil for Tests" fresh = Sample() # print(fresh.physical_properties) oil.sub_samples.append(fresh) return oil
def test_default_empty_attributes(self, attr): """ test that various attributes get a default empty object, rather than None """ s = Sample() assert getattr(s, attr) is not None
def test_init(self): s = Sample() for attr in ('CCME', 'ESTS_hydrocarbon_fractions', 'SARA', 'bulk_composition', 'compounds', 'cut_volume', 'distillation_data', 'environmental_behavior', 'extra_data', 'headspace_analysis', 'industry_properties', 'metadata', 'miscellaneous', 'physical_properties'): assert hasattr(s, attr) assert s.metadata.name == "Fresh Oil Sample" assert s.metadata.short_name == "Fresh Oil"
def test_complete_sample(self): """ trying to do a pretty complete one Note: This is more an integration test. Each complex attribute of the Sample should have its own pytests """ s = Sample(metadata=SampleMetaData( short_name="short", name="a longer name that is more descriptive")) p = PhysicalProperties() s.metadata.fraction_evaporated = MassFraction(value=11, unit='%') s.metadata.boiling_point_range = None p.densities = DensityList([ DensityPoint(density=Density(value=0.8751, unit="kg/m^3", standard_deviation=1.2, replicates=3), ref_temp=Temperature(value=15.0, unit="C")), DensityPoint(density=Density(value=0.99, unit="kg/m^3", standard_deviation=1.4, replicates=5), ref_temp=Temperature(value=25.0, unit="C")) ]) s.physical_properties = p py_json = s.py_json(sparse=False) # the non-sparse version for name in ('CCME', 'ESTS_hydrocarbon_fractions', 'SARA', 'bulk_composition', 'compounds', 'cut_volume', 'distillation_data', 'environmental_behavior', 'extra_data', 'headspace_analysis', 'industry_properties', 'metadata', 'miscellaneous', 'physical_properties'): assert name in py_json assert py_json['metadata']['name'] == ('a longer name that is more ' 'descriptive') assert py_json['metadata']['short_name'] == "short" for name in ('densities', 'kinematic_viscosities', 'dynamic_viscosities'): assert name in py_json['physical_properties'] # Now test some real stuff: dens = py_json['physical_properties']['densities'] print(type(dens)) assert type(dens) == list assert dens[0]['density']['value'] == 0.8751
def test_json_non_sparse(self): s = Sample() py_json = s.py_json(sparse=False) for attr in ('CCME', 'ESTS_hydrocarbon_fractions', 'SARA', 'bulk_composition', 'compounds', 'cut_volume', 'distillation_data', 'environmental_behavior', 'extra_data', 'headspace_analysis', 'industry_properties', 'metadata', 'miscellaneous', 'physical_properties'): assert attr in py_json assert py_json['metadata']['name'] == "Fresh Oil Sample" assert py_json['metadata']['short_name'] == "Fresh Oil"
def make_oil_with_densities(self, densities, temps): oil = Oil(oil_id="DENSITY_TESTER") sample = Sample() sample.metadata.name = "only density" oil.sub_samples.append(sample) for d, t in zip(densities, temps): dp = DensityPoint(meas.Density(d, unit="kg/m^3"), meas.Temperature(t, unit="K")) sample.physical_properties.densities.append(dp) return oil
def add_kin_viscosity_to_oil(oil, viscosities, temp, unit, kvis_temp=15.0, temp_unit="C"): try: sample = oil.sub_samples[0] except IndexError: sample = Sample() sample.metadata.name = "only viscosity" oil.sub_samples.append(sample) for kvis in viscosities: kp = KinematicViscosityPoint( meas.KinematicViscosity(kvis, unit=unit), meas.Temperature(kvis_temp, unit=temp_unit)) sample.physical_properties.kinematic_viscosities.append(kp) return None
def no_api_with_one_density_13C(): oil = Oil(oil_id='XXXXXX') oil.metadata.product_type = "Condensate" print(oil) # create a sample for fresh oil s = Sample() # add some densities # p = PhysicalProperties() p = s.physical_properties p.densities = DensityList([ DensityPoint(density=Density(value=0.8751, unit="g/cm^3"), ref_temp=Temperature(value=13.0, unit="C")), ]) oil.sub_samples.append(s) return oil
def test_sample_with_ccme(): """ testing loading a sample with ccme data from py_json """ ccme = CCME() ccme.F1 = MassFraction(unit="mg/g", value=15.58) ccme.F2 = MassFraction(unit="mg/g", value=50) ccme.F3 = MassFraction(unit="mg/g", value=193) ccme.F4 = MassFraction(unit="mg/g", value=40) ccme.method = "a method name" s = Sample(metadata=SampleMetaData( short_name="short", name="a longer name that is more descriptive")) s.metadata.fraction_evaporated = MassFraction(value=16, unit="%") s.metadata.boiling_point_range = None s.CCME = ccme sample_json = s.py_json() s2 = Sample.from_py_json(sample_json) assert s == s2
def test_add_non_existing(self): s = Sample() with pytest.raises(AttributeError): s.something_random = 43
def test_json(self): s = Sample(metadata=SampleMetaData( short_name="short", name="a longer name that is more descriptive")) py_json = s.py_json() # the sparse version assert tuple(py_json['metadata'].keys()) == ('name', 'short_name')
def test_populated(self): s = Sample() sl = SampleList([s]) assert len(sl) == 1 assert type(sl[0]) == Sample