示例#1
0
 def test_knapsack_unbounded(self):
     # wikipedia example for _unbounded
     i1 = Item(2,  1)
     i2 = Item(10, 4)
     i3 = Item(1,  1)
     i4 = Item(2,  2)
     i5 = Item(4, 12)
     
     self.assertEqual((36,[3,3,0,0,0]), knapsack_unbounded([i1,i2,i3,i4,i5], 15))
示例#2
0
 def test_knapsack_01(self):
     # wikipedia example for _01 
     
     # Item (Value, Weight)
     i1 = Item(2,  1)
     i2 = Item(10, 4)
     i3 = Item(1,  1)
     i4 = Item(2,  2)
     i5 = Item(4, 12)
     
     self.assertEqual((15, [1,1,1,1,0]), knapsack_01([i1,i2,i3,i4,i5], 15))
示例#3
0
 def test_other_example(self):
     # http://www.cs.princeton.edu/~wayne/cs423/lectures/approx-alg-4up.pdf
     
     # Item (Value, Weight)
     i1 = Item(1, 1)
     i2 = Item(6, 2)
     i3 = Item(18,5)
     i4 = Item(22,6)
     i5 = Item(28,7)
     
     self.assertEqual((40,[0,0,1,1,0]), knapsack_01([i1,i2,i3,i4,i5], 11))
示例#4
0
    def test_knapsack_unbounded_for_approx(self):
        # http://math.stackexchange.com/questions/720001/

        # Item (Value, Weight)
        i1 = Item (90, 9)
        i2 = Item (19, 2)
        i3 = Item (1, 1)
        self.assertEqual((95,[0,5,0]), knapsack_unbounded([i1,i2,i3], 10))
        
        # approximation chooses this one
        self.assertEqual((91,[1,0,1]), knapsack_approximate([i1,i2,i3], 10))
示例#5
0
def trials():
    """Conduct timing trials for sample values of W."""
    # 103 207 4 2 523
    a = 103
    b = 207
    c = 4
    d = 2

    items = []
    # Item (Value, Weight)
    for i in range(a, b, c):
        items.append(Item(i, i))
        items.append(Item(d * i + 1, d * i + 1))

    maxBestTotal = 0

    print('W', 'KnapsackUnboundedTime', 'KnapsackApproximateTime',
          'ActualAnswer', 'ApproximateAnswer')
    diffTotal = 0
    W = 10
    numReps = 1
    numTrials = 1
    while W <= 65536:
        itemSet = 'items=[]\n'
        for item in items:
            itemSet = itemSet + 'items.append(Item(' + str(
                item.value) + ',' + str(item.weight) + '))\n'
        setup = '''
from adk.knapsack import knapsack_unbounded, knapsack_01, knapsack_approximate, Item, record_best
import random\n''' + itemSet + '''
'''
        executeUnbound = '''
record_best (knapsack_unbounded(items,''' + str(W) + ''')[0])
'''
        totalUnbound = min(
            timeit.Timer(executeUnbound,
                         setup=setup).repeat(numReps, numTrials))

        executeApproximate = '''
record_best (knapsack_approximate(items,''' + str(W) + ''')[0])
'''
        totalApproximate = min(
            timeit.Timer(executeApproximate,
                         setup=setup).repeat(numReps, numTrials))

        print(W, '{0:.5f}'.format(totalUnbound),
              '{0:.5f}'.format(totalApproximate), record_best())
        W = W * 2 + 1

    if diffTotal > maxBestTotal:
        print(a, b, c, d, diffTotal)
        maxBestTotal = diffTotal
def reportOne():
    """
    To see the generates matrices, modify the knapsack methods temporarily to
    print out the matrices.
    """
    items = [Item(4, 4), Item(8, 8), Item(9, 9), Item(10, 10)]
    W = 33

    print("Knapsack Unbounded")
    w_un = knapsack_unbounded(items[:], W)
    print(w_un)

    print("Knapsack Approximate")
    w_ap = knapsack_approximate(items[:], W)
    print(w_ap)

    print("Knapsack 0/1")
    w_01 = knapsack_01(items[:], W)
    print(w_01)
def trials():
    """
    Locate knapsack items that has different results for :
       1) knapsack_unbounded
       2) knapsack_01
       3) knapsack_approximate
       
    Found this nice example:
    
    W = 33
    (33, [6, 0, 0, 1]) (32, [8, 0, 0, 0]) (31, [1, 1, 1, 1])

        (val= 4 , weight= 4
        (val= 8 , weight= 8
        (val= 10 , weight= 10
        (val= 9 , weight= 9

    """
    # 103 207 4 2 523

    for t in range(10000):
        items = []
        # Item (Value, Weight)
        for _ in range(5):
            i = random.randint(3, 11)
            items.append(Item(i, i))

        W = 33

        w_un = knapsack_unbounded(items[:], W)
        w_ap = knapsack_approximate(items[:], W)
        w_01 = knapsack_01(items[:], W)

        if w_un[0] != w_ap[0] and w_ap[0] != w_01[0] and w_un[0] != w_01[0]:
            print(w_un, w_ap, w_01)
            for i in items:
                print('(val=', i.value, ', weight=', i.weight)
            return
示例#8
0
def trials():
    """
    Search small space to determine input set to knapsack that offers greatest
    difference between dynamic programming and approximate. Once computed, use
    these values in adk.book.chapter11.py 
    """
    # 83 250 4 2 457
    # 103 207 4 2 523
    a = 23
    b = 56
    c = 8
    d = 5

    maxBestTotal = 0
    for a in range(23, 113, 10):
        for b2 in range(1, 8):
            b = a * b2 + 1
            for c in [4, 8, 16, 32, 64]:
                for d in range(2, 7):

                    diffTotal = 0
                    W = 10
                    numReps = 1
                    numTrials = 1
                    while W <= 65536:

                        items = []
                        # Item (Value, Weight)
                        for i in range(a, b, c):
                            items.append(Item(i, i))
                            items.append(Item(d * i + 1, d * i + 1))

                        itemSet = 'items=[]\n'
                        for item in items:
                            itemSet = itemSet + 'items.append(Item(' + str(
                                item.value) + ',' + str(item.weight) + '))\n'
                            #itemSet = itemSet + 'items.append(Item(' + str(W//4) + "," + str(W//4) + '))\n'
                        setup = '''
from adk.knapsack import knapsack_unbounded, knapsack_01, knapsack_approximate, Item, record_best
import random\n''' + itemSet + '''
'''
                        executeUnbound = '''
record_best (knapsack_unbounded(items,''' + str(W) + ''')[0])
'''
                        totalUnbound = min(
                            timeit.Timer(executeUnbound, setup=setup).repeat(
                                numReps, numTrials))

                        executeApproximate = '''
record_best (knapsack_approximate(items,''' + str(W) + ''')[0])
'''
                        totalApproximate = min(
                            timeit.Timer(executeApproximate,
                                         setup=setup).repeat(
                                             numReps, numTrials))

                        #print (W, totalUnbound, totalApproximate, record_best())
                        best2 = record_best()
                        if len(best2) > 0:
                            diffTotal += best2[0] - best2[1]
                        W = W * 2 + 1

                    if diffTotal > maxBestTotal:
                        print(a, b, c, d, diffTotal)
                        maxBestTotal = diffTotal