from sklearn.linear_model import LinearRegression # We have 4 types of models # - one-to-one: input a univariate series, output a univariate series # - one-to-many: input a univariate series, output a multivariate series # - many-to-one: input a multivariate series, output a univariate series # - many-to-many: input a multivariate series, output a multivariate series one2one_models = [ detector.ThresholdAD(), detector.QuantileAD(), detector.InterQuartileRangeAD(), detector.GeneralizedESDTestAD(), detector.PersistAD(), detector.LevelShiftAD(), detector.VolatilityShiftAD(), detector.AutoregressionAD(), detector.SeasonalAD(freq=2), transformer.RollingAggregate(agg="median"), transformer.RollingAggregate(agg="quantile", agg_params={"q": 0.5}), transformer.DoubleRollingAggregate(agg="median"), transformer.DoubleRollingAggregate( agg="quantile", agg_params={"q": [0.1, 0.5, 0.9]} ), transformer.DoubleRollingAggregate( agg="hist", agg_params={"bins": [30, 50, 70]} ), transformer.StandardScale(), transformer.ClassicSeasonalDecomposition(freq=2), ]
) # We have 4 types of models # - one-to-one: input a univariate series, output a univariate series # - one-to-many: input a univariate series, output a multivariate series # - many-to-one: input a multivariate series, output a univariate series # - many-to-many: input a multivariate series, output a multivariate series one2one_models = [ detector.ThresholdAD(), detector.QuantileAD(), detector.InterQuartileRangeAD(), detector.GeneralizedESDTestAD(), detector.PersistAD(window=10), detector.LevelShiftAD(window=10), detector.VolatilityShiftAD(window=10), detector.AutoregressionAD(), detector.SeasonalAD(freq=2), transformer.RollingAggregate(window=10, agg="median"), transformer.RollingAggregate( window=10, agg="quantile", agg_params={"q": 0.5} ), transformer.DoubleRollingAggregate(window=10, agg="median"), transformer.DoubleRollingAggregate( window=10, agg="quantile", agg_params={"q": [0.1, 0.5, 0.9]} ), transformer.DoubleRollingAggregate( window=10, agg="hist", agg_params={"bins": [30, 50, 70]} ), transformer.StandardScale(), transformer.ClassicSeasonalDecomposition(freq=2),