def main(): """ Advbox demo which demonstrate how to use advbox. """ TOTAL_NUM = 500 IMG_NAME = 'img' LABEL_NAME = 'label' img = fluid.layers.data(name=IMG_NAME, shape=[1, 28, 28], dtype='float32') # gradient should flow img.stop_gradient = False label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64') logits = mnist_cnn_model(img) cost = fluid.layers.cross_entropy(input=logits, label=label) avg_cost = fluid.layers.mean(x=cost) # use CPU place = fluid.CPUPlace() # use GPU # place = fluid.CUDAPlace(0) exe = fluid.Executor(place) BATCH_SIZE = 1 train_reader = paddle.batch(paddle.reader.shuffle( paddle.dataset.mnist.train(), buf_size=128 * 10), batch_size=BATCH_SIZE) test_reader = paddle.batch(paddle.reader.shuffle( paddle.dataset.mnist.test(), buf_size=128 * 10), batch_size=BATCH_SIZE) fluid.io.load_params(exe, "./mnist/", main_program=fluid.default_main_program()) # advbox demo m = PaddleModel(fluid.default_main_program(), IMG_NAME, LABEL_NAME, logits.name, avg_cost.name, (-1, 1), channel_axis=1) attack = FGSM(m) # attack = FGSMT(m) attack_config = {"epsilons": 0.3} # use train data to generate adversarial examples total_count = 0 fooling_count = 0 for data in train_reader(): total_count += 1 adversary = Adversary(data[0][0], data[0][1]) # FGSM non-targeted attack adversary = attack(adversary, **attack_config) # FGSMT targeted attack # tlabel = 0 # adversary.set_target(is_targeted_attack=True, target_label=tlabel) # adversary = attack(adversary, **attack_config) if adversary.is_successful(): fooling_count += 1 print( 'attack success, original_label=%d, adversarial_label=%d, count=%d' % (data[0][1], adversary.adversarial_label, total_count)) # plt.imshow(adversary.target, cmap='Greys_r') # plt.show() # np.save('adv_img', adversary.target) else: print('attack failed, original_label=%d, count=%d' % (data[0][1], total_count)) if total_count >= TOTAL_NUM: print( "[TRAIN_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f" % (fooling_count, total_count, float(fooling_count) / total_count)) break # use test data to generate adversarial examples total_count = 0 fooling_count = 0 for data in test_reader(): total_count += 1 adversary = Adversary(data[0][0], data[0][1]) # FGSM non-targeted attack adversary = attack(adversary, **attack_config) # FGSMT targeted attack # tlabel = 0 # adversary.set_target(is_targeted_attack=True, target_label=tlabel) # adversary = attack(adversary, **attack_config) if adversary.is_successful(): fooling_count += 1 print( 'attack success, original_label=%d, adversarial_label=%d, count=%d' % (data[0][1], adversary.adversarial_label, total_count)) # plt.imshow(adversary.target, cmap='Greys_r') # plt.show() # np.save('adv_img', adversary.target) else: print('attack failed, original_label=%d, count=%d' % (data[0][1], total_count)) if total_count >= TOTAL_NUM: print( "[TEST_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f" % (fooling_count, total_count, float(fooling_count) / total_count)) break print("fgsm attack done")
def main(modulename, imagename): ''' Kera的应用模块Application提供了带有预训练权重的Keras模型,这些模型可以用来进行预测、特征提取和finetune 模型的预训练权重将下载到~/.keras/models/并在载入模型时自动载入 ''' # 设置为测试模式 keras.backend.set_learning_phase(0) model = ResNet50(weights=modulename) #model = InceptionV3(weights=modulename) logging.info(model.summary()) img = image.load_img(imagename, target_size=(224, 224)) raw_imagedata = image.img_to_array(img) raw_imagedata = np.expand_dims(raw_imagedata, axis=0) # 'RGB'->'BGR' imagedata = raw_imagedata[:, :, :, ::-1] #logging.info(raw_imagedata) #logging.info(imagedata) #logit fc1000 logits = model.get_layer('fc1000').output #keras中获取指定层的方法为: #base_model.get_layer('block4_pool').output) # advbox demo # 因为原始数据没有归一化 所以bounds=(0, 255) KerasMode内部在进行预测和计算梯度时会进行预处理 # imagenet数据集归一化时 标准差为1 mean为[104, 116, 123] # featurefqueezing_bit_depth featurefqueezing防御算法 提高生成攻击样本的质量 为特征数据的bit位 一般8就ok了 m = KerasModel(model, model.input, None, logits, None, bounds=(0, 255.0), channel_axis=3, preprocess=([104, 116, 123], 1), featurefqueezing_bit_depth=8) attack = FGSM(m) #设置epsilons时不用考虑特征范围 算法实现时已经考虑了取值范围的问题 epsilons取值范围为(0,1) #epsilon支持动态调整 epsilon_steps为epsilon变化的个数 #epsilons为下限 epsilons_max为上限 #attack_config = {"epsilons": 0.3, "epsilons_max": 0.5, "epsilon_steps": 100} #静态epsilons attack_config = { "epsilons": 1, "epsilons_max": 10, "epsilon_steps": 1, "steps": 100 } #y设置为空 会自动计算 adversary = Adversary(imagedata.copy(), None) # FGSM non-targeted attack adversary = attack(adversary, **attack_config) if adversary.is_successful(): print('attack success, adversarial_label=%d' % (adversary.adversarial_label)) #对抗样本保存在adversary.adversarial_example adversary_image = np.copy(adversary.adversarial_example) logging.info("adversary_image label={0} ".format( np.argmax(m.predict(adversary_image)))) #logging.info(adversary_image) #强制类型转换 之前是float 现在要转换成uint8 adversary_image = np.array(adversary_image).astype("uint8").reshape( [224, 224, 3]) #logging.info(adversary_image) adversary_image = adversary_image[:, :, ::-1] logging.info(adversary_image - raw_imagedata) img = array_to_img(adversary_image) img.save('adversary_image_nontarget.jpg') print("fgsm non-target attack done") attack = FGSMT(m) #静态epsilons attack_config = { "epsilons": 10, "epsilons_max": 10, "epsilon_steps": 1, "steps": 100 } adversary = Adversary(imagedata, None) tlabel = 489 adversary.set_target(is_targeted_attack=True, target_label=tlabel) # FGSM targeted attack adversary = attack(adversary, **attack_config) if adversary.is_successful(): print('attack success, adversarial_label=%d' % (adversary.adversarial_label)) #对抗样本保存在adversary.adversarial_example adversary_image = np.copy(adversary.adversarial_example) #强制类型转换 之前是float 现在要转换成int8 adversary_image = np.array(adversary_image).astype("uint8").reshape( [224, 224, 3]) adversary_image = adversary_image[:, :, ::-1] logging.info(adversary_image - raw_imagedata) img = array_to_img(adversary_image) img.save('adversary_image_target.jpg') print("fgsm target attack done")
def main(use_cuda): """ Advbox example which demonstrate how to use advbox. """ # base marco TOTAL_NUM = 100 IMG_NAME = 'image' LABEL_NAME = 'label' # parse args args = parser.parse_args() print_arguments(args) # parameters from arguments class_dim = args.class_dim model_name = args.model target_class = args.target pretrained_model = args.pretrained_model image_shape = [int(m) for m in args.image_shape.split(",")] if args.log_debug: logging.getLogger().setLevel(logging.INFO) assert model_name in model_list, "{} is not in lists: {}".format( args.model, model_list) # model definition model = models.__dict__[model_name]() # declare vars image = fluid.layers.data(name=IMG_NAME, shape=image_shape, dtype='float32') logits = model.net(input=image, class_dim=class_dim) # clone program and graph for inference infer_program = fluid.default_main_program().clone(for_test=True) image.stop_gradient = False label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64') cost = fluid.layers.cross_entropy(input=logits, label=label) avg_cost = fluid.layers.mean(x=cost) BATCH_SIZE = 1 test_reader = paddle.batch(reader.test(TEST_LIST, DATA_PATH), batch_size=BATCH_SIZE) # advbox demo m = PaddleModel(fluid.default_main_program(), IMG_NAME, LABEL_NAME, logits.name, avg_cost.name, (0, 1), channel_axis=3) # Adversarial method: FGSM attack = FGSM(m) attack_config = {"epsilons": 0.03} enable_gpu = use_cuda and args.use_gpu place = fluid.CUDAPlace(0) if enable_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) # reload model vars if pretrained_model: def if_exist(var): return os.path.exists(os.path.join(pretrained_model, var.name)) fluid.io.load_vars(exe, pretrained_model, predicate=if_exist) # inference pred_label = infer(infer_program, image, logits, place, exe) # if only inference ,and exit if args.inference: exit(0) print("--------------------adversary-------------------") # use test data to generate adversarial examples total_count = 0 fooling_count = 0 for data in test_reader(): total_count += 1 data_img = [data[0][0]] filename = data[0][1] org_data = data_img[0][0] adversary = Adversary(org_data, pred_label[filename]) #target attack if target_class != -1: tlabel = target_class adversary.set_target(is_targeted_attack=True, target_label=tlabel) adversary = attack(adversary, **attack_config) if adversary.is_successful(): fooling_count += 1 print( 'attack success, original_label=%d, adversarial_label=%d, count=%d' % (pred_label[filename], adversary.adversarial_label, total_count)) #output original image, adversarial image and difference image generation_image(total_count, org_data, pred_label[filename], adversary.adversarial_example, adversary.adversarial_label, "FGSM") else: print('attack failed, original_label=%d, count=%d' % (pred_label[filename], total_count)) if total_count >= TOTAL_NUM: print( "[TEST_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f" % (fooling_count, total_count, float(fooling_count) / total_count)) break # inference pred_label2 = infer(infer_program, image, logits, place, exe) print("fgsm attack done")
def main(use_cuda): """ Advbox demo which demonstrate how to use advbox. """ TOTAL_NUM = 500 IMG_NAME = 'img' LABEL_NAME = 'label' img = fluid.layers.data(name=IMG_NAME, shape=[3, 32, 32], dtype='float32') # gradient should flow img.stop_gradient = False label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64') # logits = mnist_cnn_model(img) # logits = vgg_bn_drop(img) logits = resnet_cifar10(img, 32) cost = fluid.layers.cross_entropy(input=logits, label=label) avg_cost = fluid.layers.mean(x=cost) #根据配置选择使用CPU资源还是GPU资源 place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) BATCH_SIZE = 1 test_reader = paddle.batch( paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE) fluid.io.load_params( exe, "cifar10/resnet/", main_program=fluid.default_main_program()) # advbox demo m = PaddleModel( fluid.default_main_program(), IMG_NAME, LABEL_NAME, logits.name, avg_cost.name, (-1, 1), channel_axis=1) attack = FGSM(m) # attack = FGSMT(m) attack_config = {"epsilons": 0.3} # use test data to generate adversarial examples total_count = 0 fooling_count = 0 for data in test_reader(): total_count += 1 adversary = Adversary(data[0][0], data[0][1]) # FGSM non-targeted attack adversary = attack(adversary, **attack_config) if adversary.is_successful(): fooling_count += 1 print( 'attack success, original_label=%d, adversarial_label=%d, count=%d' % (data[0][1], adversary.adversarial_label, total_count)) else: print('attack failed, original_label=%d, count=%d' % (data[0][1], total_count)) if total_count >= TOTAL_NUM: print( "[TEST_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f" % (fooling_count, total_count, float(fooling_count) / total_count)) break print("fgsm attack done")
def main(modulename, imagename): ''' Kera的应用模块Application提供了带有预训练权重的Keras模型,这些模型可以用来进行预测、特征提取和finetune 模型的预训练权重将下载到~/.keras/models/并在载入模型时自动载入 ''' # 设置为测试模式 keras.backend.set_learning_phase(0) model = ResNet50(weights=modulename) logging.info(model.summary()) img = image.load_img(imagename, target_size=(224, 224)) imagedata = image.img_to_array(img) imagedata = np.expand_dims(imagedata, axis=0) #keras数据预处理后范围为(-128,128) imagedata = preprocess_input(imagedata) preds = model.predict(imagedata) #logit fc1000 logits = model.get_layer('fc1000').output print('Predicted:', decode_predictions(preds, top=3)[0]) #keras中获取指定层的方法为: #base_model.get_layer('block4_pool').output) # advbox demo # 因为原始数据没有归一化 所以bounds=(0, 255) m = KerasModel(model, model.input, None, logits, None, bounds=(-128, 128), channel_axis=3, preprocess=None) attack = FGSM(m) #设置epsilons时不用考虑特征范围 算法实现时已经考虑了取值范围的问题 epsilons取值范围为(0,1) #epsilon支持动态调整 epsilon_steps为epsilon变化的个数 #epsilons为下限 epsilons_max为上限 attack_config = { "epsilons": 0.1, "epsilons_max": 0.5, "epsilon_steps": 100 } #y设置为空 会自动计算 adversary = Adversary(imagedata, None) # FGSM non-targeted attack adversary = attack(adversary, **attack_config) if adversary.is_successful(): print('attack success, adversarial_label=%d' % (adversary.adversarial_label)) #对抗样本保存在adversary.adversarial_example adversary_image = np.copy(adversary.adversarial_example) #强制类型转换 之前是float 现在要转换成int8 #print(adversary_image) adversary_image = np.array(adversary_image).astype("int8").reshape( [224, 224, 3]) #logging.info(adversary_image-imagedata) #logging.info(adversary_image) im = Image.fromarray(adversary_image) im.save("adversary_image_nontarget.jpg") print("fgsm non-target attack done")
def main(): """ Advbox demo which demonstrate how to use advbox. """ TOTAL_NUM = 2 pretrained_model = "./mnist-pytorch/net.pth" loss_func = torch.nn.CrossEntropyLoss() test_loader = torch.utils.data.DataLoader(datasets.MNIST( './mnist-pytorch/data', train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), ])), batch_size=1, shuffle=False) # Define what device we are using logging.info("CUDA Available: {}".format(torch.cuda.is_available())) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Initialize the network model = Net().to(device) # Load the pretrained model model.load_state_dict(torch.load(pretrained_model, map_location='cpu')) # Set the model in evaluation mode. In this case this is for the Dropout layers model.eval() # advbox demo m = PytorchModel(model, loss_func, (0, 1), channel_axis=1) attack = FGSM(m) attack_config = { "epsilons": 0.2, "epsilon_steps": 1, "epsilons_max": 0.2, "norm_ord": 1, "steps": 10 } # use test data to generate adversarial examples total_count = 0 fooling_count = 0 for i, data in enumerate(test_loader): inputs, labels = data #inputs, labels = inputs.to(device), labels.to(device) inputs, labels = inputs.numpy(), labels.numpy() #inputs.requires_grad = True #print(inputs.shape) total_count += 1 adversary = Adversary(inputs, labels[0]) # FGSM non-targeted attack adversary = attack(adversary, **attack_config) if adversary.is_successful(): fooling_count += 1 print( 'attack success, original_label=%d, adversarial_label=%d, count=%d' % (labels, adversary.adversarial_label, total_count)) else: print('attack failed, original_label=%d, count=%d' % (labels, total_count)) if total_count >= TOTAL_NUM: print( "[TEST_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f" % (fooling_count, total_count, float(fooling_count) / total_count)) break print("fgsm attack done")
def main(use_cuda): """ Advbox demo which demonstrate how to use advbox. """ TOTAL_NUM = 500 IMG_NAME = 'image' LABEL_NAME = 'label' weight_file = "fluid/lenet/lenet.npy" #1, define network topology images = fluid.layers.data(name=IMG_NAME, shape=[1, 28, 28], dtype='float32') # gradient should flow images.stop_gradient = False label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64') net = LeNet({'data': images}) prediction = net.layers['prob'] cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = fluid.layers.mean(x=cost) #根据配置选择使用CPU资源还是GPU资源 place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) #这句很关键 没有的话会报错 # AttributeError: 'NoneType' object has no attribute 'get_tensor' exe.run(fluid.default_startup_program()) #加载参数 net.load(data_path=weight_file, exe=exe, place=place) BATCH_SIZE = 1 test_reader = paddle.batch(paddle.reader.shuffle( paddle.dataset.mnist.test(), buf_size=128 * 10), batch_size=BATCH_SIZE) # advbox demo m = PaddleModel(fluid.default_main_program(), IMG_NAME, LABEL_NAME, prediction.name, avg_cost.name, (-1, 1), channel_axis=1) attack = FGSM(m) # attack = FGSMT(m) attack_config = {"epsilons": 0.3} # use test data to generate adversarial examples total_count = 0 fooling_count = 0 for data in test_reader(): total_count += 1 adversary = Adversary(data[0][0], data[0][1]) # FGSM non-targeted attack adversary = attack(adversary, **attack_config) if adversary.is_successful(): fooling_count += 1 print( 'attack success, original_label=%d, adversarial_label=%d, count=%d' % (data[0][1], adversary.adversarial_label, total_count)) else: print('attack failed, original_label=%d, count=%d' % (data[0][1], total_count)) if total_count >= TOTAL_NUM: print( "[TEST_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f" % (fooling_count, total_count, float(fooling_count) / total_count)) break print("fgsm attack done")
def main(dirname): """ Advbox demo which demonstrate how to use advbox. """ TOTAL_NUM = 500 mnist = input_data.read_data_sets("MNIST_data/", one_hot=False) x = tf.placeholder(tf.float32, [None, 784]) y_ = tf.placeholder(tf.int64, [None]) #keep_prob = tf.placeholder(tf.float32) keep_prob = 1.0 logits = mnist_cnn_model(x, keep_prob) cross_entropy = tf.losses.sparse_softmax_cross_entropy(labels=y_, logits=logits) cross_entropy = tf.reduce_mean(cross_entropy) BATCH_SIZE = 1 # advbox demo m = TensorflowModel(dirname, x, cross_entropy, logits, (-1, 1), channel_axis=1) attack = FGSM(m) attack_config = {"epsilons": 0.3} # use test data to generate adversarial examples total_count = 0 fooling_count = 0 for _ in range(10000): data = mnist.test.next_batch(BATCH_SIZE, shuffle=False) total_count += 1 (x, y) = data y = y[0] #print(x.shape) #print(y.shape) adversary = Adversary(x, y) # FGSM non-targeted attack adversary = attack(adversary, **attack_config) if adversary.is_successful(): fooling_count += 1 print( 'attack success, original_label=%d, adversarial_label=%d, count=%d' % (y, adversary.adversarial_label, total_count)) else: print('attack failed, original_label=%d, count=%d' % (y, total_count)) if total_count >= TOTAL_NUM: print( "[TEST_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f" % (fooling_count, total_count, float(fooling_count) / total_count)) break print("fgsm attack done")
def main(): """ Advbox demo which demonstrate how to use advbox. """ TOTAL_NUM = 10 pretrained_model = "./cifar-pytorch/net.pth" loss_func = torch.nn.CrossEntropyLoss() test_loader = torch.utils.data.DataLoader(datasets.CIFAR10( './cifar-pytorch/data', train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), ])), batch_size=1, shuffle=False) # Define what device we are using logging.info("CUDA Available: {}".format(torch.cuda.is_available())) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Initialize the network model = Net().to(device) # Load the pretrained model model.load_state_dict(torch.load(pretrained_model, map_location='cpu')) # Set the model in evaluation mode. In this case this is for the Dropout layers model.eval() attack_config = { "epsilons": 0.005, "epsilon_steps": 40, "epsilons_max": 0.2, "norm_ord": 1, "steps": 100 } print(attack_config) for idx in [-10, -5, -2, -1, 0, 1, 2, 5, 10]: print('grad_conf:', idx) # advbox demo m = PytorchModel(model, loss_func, (0, 1), channel_axis=1, grad_conf=idx) attack = FGSM(m) # use test data to generate adversarial examples total_count = 0 fooling_count = 0 m_dists = [] e_dists = [] for i, data in enumerate(test_loader): inputs, labels = data #inputs, labels = inputs.to(device), labels.to(device) inputs, labels = inputs.numpy(), labels.numpy() #inputs.requires_grad = True #print(inputs.shape) total_count += 1 adversary = Adversary(inputs, labels[0]) # FGSM non-targeted attack adversary = attack(adversary, **attack_config) if adversary.is_successful(): fooling_count += 1 # print( # 'attack success, original_label=%d, adversarial_label=%d, count=%d' # % (labels, adversary.adversarial_label, total_count)) m_dist = mahalanobis_dist(adversary.original, adversary.adversarial_example) e_dist = eu_dist(adversary.original, adversary.adversarial_example) m_dists = m_dists + [m_dist] e_dists = e_dists + [e_dist] # else: # print('attack failed, original_label=%d, count=%d' % # (labels, total_count)) if total_count >= TOTAL_NUM: print( "[TEST_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f" % (fooling_count, total_count, float(fooling_count) / total_count)) print("mahalanobis_dist:", np.mean(m_dists)) print("eu_dist", np.mean(e_dists)) break print("done") print('all done')
def main(modulename, imagename): ''' Kera的应用模块Application提供了带有预训练权重的Keras模型,这些模型可以用来进行预测、特征提取和finetune 模型的预训练权重将下载到~/.keras/models/并在载入模型时自动载入 ''' # 设置为测试模式 keras.backend.set_learning_phase(0) model = ResNet50(weights=modulename) img = image.load_img(imagename, target_size=(224, 224)) original_image = image.img_to_array(img) imagedata = np.expand_dims(original_image, axis=0) #获取logit层 logits = model.get_layer('fc1000').output # 创建keras对象 # imagenet数据集归一化时 标准差为1 mean为[104, 116, 123] m = KerasModel(model, model.input, None, logits, None, bounds=(0, 255), channel_axis=3, preprocess=([104, 116, 123], 1), featurefqueezing_bit_depth=8) attack = FGSM(m) #静态epsilon attack_config = { "epsilons": 1, "epsilons_max": 10, "epsilon_steps": 1, "steps": 100 } #y设置为空 会自动计算 adversary = Adversary(imagedata[:, :, ::-1], None) # fgsm non-targeted attack adversary = attack(adversary, **attack_config) if adversary.is_successful(): print('attack success, adversarial_label=%d' % (adversary.adversarial_label)) adversary_image = np.copy(adversary.adversarial_example) #强制类型转换 之前是float 现在要转换成uint8 #BGR -> RGB adversary_image = adversary_image[:, :, ::-1] #adversary_image = np.array(adversary_image).astype("uint8").reshape([224,224,3]) #original_image=np.array(original_image).astype("uint8").reshape([224, 224, 3]) adversary_image = np.array(adversary_image).reshape([224, 224, 3]) original_image = np.array(original_image).reshape([224, 224, 3]) show_images_diff(original_image, adversary_image) print("FGSM non-target attack done")
def main(dirname, imagename): #加载解码的图像 这里是个大坑 tf提供的imagenet预训练好的模型pb文件中 包含针对图像的预处理环节 即解码jpg文件 这部分没有梯度 #需要直接处理解码后的数据 image = None with tf.gfile.Open(imagename, 'rb') as f: image = np.array(Image.open(f).convert('RGB')).astype(np.float) image = [image] session = tf.Session() def create_graph(dirname): with tf.gfile.FastGFile(dirname, 'rb') as f: graph_def = session.graph_def graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(graph_def, name='') create_graph(dirname) # 初始化参数 非常重要 session.run(tf.global_variables_initializer()) tensorlist = [n.name for n in session.graph_def.node] logger.info(tensorlist) #获取logits logits = session.graph.get_tensor_by_name('softmax/logits:0') x = session.graph.get_tensor_by_name('ExpandDims:0') #y = tf.placeholder(tf.int64, None, name='label') # advbox demo # 因为原始数据没有归一化 所以bounds=(0, 255) m = TensorflowModel(session, x, None, logits, None, bounds=(0, 255), channel_axis=3, preprocess=None) attack = FGSM(m) #设置epsilons时不用考虑特征范围 算法实现时已经考虑了取值范围的问题 epsilons取值范围为(0,1) #epsilon支持动态调整 epsilon_steps为epsilon变化的个数 #epsilons为下限 epsilons_max为上限 attack_config = { "epsilons": 20, "epsilons_max": 10, "epsilon_steps": 1, "steps": 100 } #y设置为空 会自动计算 adversary = Adversary(image, None) # FGSM non-targeted attack adversary = attack(adversary, **attack_config) if adversary.is_successful(): print('attack success, adversarial_label=%d' % (adversary.adversarial_label)) #对抗样本保存在adversary.adversarial_example adversary_image = np.copy(adversary.adversarial_example) #强制类型转换 之前是float 现在要转换成int8 #print(adversary_image) adversary_image = np.array(adversary_image).astype("uint8").reshape( [100, 100, 3]) logging.info(adversary_image - image) im = Image.fromarray(adversary_image) im.save("adversary_image_nontarget.jpg") print("fgsm non-target attack done") attack = FGSMT(m) attack_config = { "epsilons": 30, "epsilons_max": 10, "epsilon_steps": 1, "steps": 100 } adversary = Adversary(image, None) #麦克风 tlabel = 651 adversary.set_target(is_targeted_attack=True, target_label=tlabel) # FGSM targeted attack adversary = attack(adversary, **attack_config) if adversary.is_successful(): print('attack success, adversarial_label=%d' % (adversary.adversarial_label)) #对抗样本保存在adversary.adversarial_example adversary_image = np.copy(adversary.adversarial_example) #强制类型转换 之前是float 现在要转换成int8 adversary_image = np.array(adversary_image).astype("uint8").reshape( [100, 100, 3]) logging.info(adversary_image - image) im = Image.fromarray(adversary_image) im.save("adversary_image_target.jpg") print("fgsm target attack done")
def main(dirname, imagename): """ Advbox demo which demonstrate how to use advbox. """ image_data = tf.gfile.FastGFile(imagename, 'rb').read() session = tf.Session() def create_graph(dirname): with tf.gfile.FastGFile(dirname, 'rb') as f: graph_def = session.graph_def graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(graph_def, name='') create_graph(dirname) # 初始化参数 非常重要 session.run(tf.global_variables_initializer()) #tensorlist=[n.name for n in session.graph_def.node] #logger.info(tensorlist) #获取softmax层而非logit层 softmax = session.graph.get_tensor_by_name('softmax:0') #获取softmax/logits logits = session.graph.get_tensor_by_name('softmax/logits:0') x = session.graph.get_tensor_by_name('DecodeJpeg/contents:0') y = tf.placeholder(tf.int64, None, name='label') cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=y, logits=logits) #tf.gradients(tf.nn.softmax(self._logits)[:, label], self._input)[0] print('!!!!!!!') #print(logits[:, 0]) #print(tf.nn.softmax(logits[:, 0]) ) #print(x) #print(cross_entropy) #print(g) #print(logits) #print(softmax) g = session.run(logits, feed_dict={x: image_data}) print(g) g = session.run(softmax, feed_dict={x: image_data}) print(g) #tf.gradients(tf.nn.softmax(self._logits)[:, label], self._input_ph)[0] #print(logits[:, 1]) g = tf.gradients(logits, x) print(g) g = tf.gradients(softmax, x) print(g) z = tf.placeholder(tf.int64, None) z = 2 * y g = tf.gradients(z, y) print(g) #grads = session.run(g, feed_dict={x: image_data}) #print(grads) # advbox demo m = TensorflowPBModel(session, x, y, softmax, cross_entropy, (0, 1), channel_axis=1) attack = FGSM(m) attack_config = {"epsilons": 0.3} #print(x.shape) #print(y.shape) adversary = Adversary(image_data, None) # FGSM non-targeted attack adversary = attack(adversary, **attack_config) if adversary.is_successful(): print('attack success, adversarial_label=%d' % (adversary.adversarial_label)) print("fgsm attack done")
def main(use_cuda): """ Advbox demo which demonstrate how to use advbox. """ class_dim = 1000 IMG_NAME = 'img' LABEL_NAME = 'label' #模型路径 pretrained_model = "models/resnet_50/115" with_memory_optimization = 1 image_shape = [3,224,224] image = fluid.layers.data(name=IMG_NAME, shape=image_shape, dtype='float32') # gradient should flow image.stop_gradient = False label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64') # model definition model = resnet.ResNet50() out = model.net(input=image, class_dim=class_dim) #test_program = fluid.default_main_program().clone(for_test=True) if with_memory_optimization: fluid.memory_optimize(fluid.default_main_program()) # 根据配置选择使用CPU资源还是GPU资源 place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) #加载模型参数 if pretrained_model: def if_exist(var): return os.path.exists(os.path.join(pretrained_model, var.name)) fluid.io.load_vars(exe, pretrained_model, predicate=if_exist) cost = fluid.layers.cross_entropy(input=out, label=label) avg_cost = fluid.layers.mean(x=cost) # advbox demo m = PaddleModel( fluid.default_main_program(), IMG_NAME, LABEL_NAME, out.name, avg_cost.name, (-1, 1), channel_axis=3) attack = FGSM(m) attack_config = {"epsilons": 0.3} test_data = get_image("cat.jpg") # 猫对应的标签 test_label = 285 adversary = Adversary(test_data, test_label) # FGSM non-targeted attack adversary = attack(adversary, **attack_config) if adversary.is_successful(): print( 'attack success, original_label=%d, adversarial_label=%d' % (test_label, adversary.adversarial_label)) else: print('attack failed, original_label=%d, ' % (test_label)) print("fgsm attack done")