if args.dataset.lower()=='cifar100': num_classes=100 elif args.dataset.lower()=='imagenet': num_classes=1000 elif args.dataset.lower()=='tinyimagenet': num_classes=200 else: num_classes=10 net, model_name, Q = instantiate_model(dataset=args.dataset, num_classes=num_classes, input_quant=args.input_quant, arch=args.arch, dorefa=args.dorefa, abit=args.abit, wbit=args.wbit, qin=args.qin, qout=args.qout, suffix=args.suffix, load=args.pretrained, torch_weights=args.torch_weights, device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')) framework = Framework(net=net, adversarial_testing=args.adv_tst, model_name=model_name, preprocess=Q, normalize=args.normalize, dataset=args.dataset, train_batch_size=args.train_batch_size,
if args.dataset.lower()=='imagenet': num_classes=1000 elif args.dataset.lower()=='tinyimagenet': num_classes=200 elif args.dataset.lower()=='cifar100': num_classes=100 else: num_classes=10 net, model_name, Q = instantiate_model(dataset=args.dataset, num_classes=num_classes, input_quant=args.input_quant, arch=args.arch, dorefa=args.dorefa, abit=args.abit, wbit=args.wbit, qin=args.qin, qout=args.qout, suffix=args.suffix, load=args.pretrained, torch_weights=args.torch_weights, normalize= args.normalize) # default `log_dir` is "runs" - we'll be more specific here writer = SummaryWriter('./pretrained/'+args.dataset.lower()+'/runs/'+model_name) framework = Framework(net=net, model_name=model_name, preprocess=Q, dataset=args.dataset, epochs=args.epochs,
num_classes = 1000 elif args.dataset.lower() == 'tinyimagenet': num_classes = 200 elif args.dataset.lower() == 'cifar100': num_classes = 100 else: num_classes = 10 net, model_name, Q = instantiate_model( dataset=args.dataset, num_classes=num_classes, input_quant=args.input_quant, arch=args.arch, dorefa=args.dorefa, abit=args.abit, wbit=args.wbit, qin=args.qin, qout=args.qout, suffix=args.suffix, load=args.pretrained, torch_weights=args.torch_weights, device=torch.device('cuda' if torch.cuda.is_available() else 'cpu'), normalize=args.normalize) framework = Framework(net=net, model_name=model_name, preprocess=Q, dataset=args.dataset, train_batch_size=args.train_batch_size, test_batch_size=args.test_batch_size, val_split=args.val_split,