示例#1
0
    def test_1d_query(self):
        seed = 1
        torch.manual_seed(seed)
        np.random.seed(seed)
        n_init = 150
        n_opt = 1
        lb = -4.0
        ub = 4.0

        target = 0.5

        def obj(x):
            return -((Normal(0, 1).cdf(x[..., 0]) - target) ** 2)

        # Test sine function with period 4
        def test_fun(x):
            return np.sin(np.pi * x / 4)

        strat_list = [
            Strategy(
                lb=lb,
                ub=ub,
                n_trials=n_init,
                generator=SobolGenerator(lb=lb, ub=ub, seed=seed),
            ),
            Strategy(
                lb=lb,
                ub=ub,
                model=GPClassificationModel(lb=lb, ub=ub, inducing_size=10),
                generator=OptimizeAcqfGenerator(
                    qUpperConfidenceBound,
                    acqf_kwargs={"beta": 1.96, "objective": GenericMCObjective(obj)},
                ),
                n_trials=n_opt,
            ),
        ]

        strat = SequentialStrategy(strat_list)

        for _i in range(n_init + n_opt):
            next_x = strat.gen()
            strat.add_data(next_x, [bernoulli.rvs(norm.cdf(test_fun(next_x)))])

        # We expect the global max to be at (2, 1), the min at (-2, -1)
        fmax, argmax = strat.get_max()
        self.assertTrue(np.abs(fmax - 1) < 0.5)
        self.assertTrue(np.abs(argmax[0] - 2) < 0.5)

        fmin, argmin = strat.get_min()
        self.assertTrue(np.abs(fmin + 1) < 0.5)
        self.assertTrue(np.abs(argmin[0] + 2) < 0.5)

        # Query at x=2 should be f=1
        self.assertTrue(np.abs(strat.predict(torch.tensor([2]))[0] - 1) < 0.5)

        # Inverse query at val 1 should return (1,[2])
        val, loc = strat.inv_query(1.0, constraints={})
        self.assertTrue(np.abs(val - 1) < 0.5)
        self.assertTrue(np.abs(loc[0] - 2) < 0.5)
示例#2
0
    def test_monotonic_single_probit_config_file(self):
        config_file = "../configs/single_lse_example.ini"
        config_file = os.path.join(os.path.dirname(__file__), config_file)

        config = Config()
        config.update(config_fnames=[config_file])
        strat = SequentialStrategy.from_config(config)

        self.assertTrue(isinstance(strat.strat_list[0], SobolStrategy))
        self.assertTrue(isinstance(strat.strat_list[1], ModelWrapperStrategy))
        self.assertTrue(
            isinstance(strat.strat_list[1].modelbridge,
                       MonotonicSingleProbitModelbridge))
        self.assertTrue(strat.strat_list[1].modelbridge.acqf is MonotonicMCLSE)
        self.assertTrue(strat.strat_list[1].modelbridge.extra_acqf_args == {
            "beta": 3.98,
            "target": 0.75
        })
        self.assertTrue(strat.strat_list[1].modelbridge.samps == 1000)
        self.assertTrue(strat.strat_list[0].n_trials == 10)
        self.assertTrue(strat.strat_list[0].outcome_type == "single_probit")
        self.assertTrue(strat.strat_list[1].n_trials == 20)
        self.assertTrue(
            torch.all(strat.strat_list[0].lb == strat.strat_list[1].lb))
        self.assertTrue(
            torch.all(
                strat.strat_list[1].modelbridge.lb == torch.Tensor([0, 0])))
        self.assertTrue(
            torch.all(strat.strat_list[0].ub == strat.strat_list[1].ub))
        self.assertTrue(
            torch.all(
                strat.strat_list[1].modelbridge.ub == torch.Tensor([1, 1])))
示例#3
0
    def run_experiment(
        self,
        problem: Problem,
        config_dict: Dict[str, Any],
        seed: int,
        rep: int,
    ) -> Tuple[List[Dict[str, Any]], SequentialStrategy]:
        """Run one simulated experiment.

        Args:
            config_dict (Dict[str, Any]): AEPsych configuration to use.
            seed (int): Random seed for this run.
            rep (int): Index of this repetition.

        Returns:
            Tuple[List[Dict[str, Any]], SequentialStrategy]: A tuple containing a log of the results and the strategy as
                of the end of the simulated experiment. This is ignored in large-scale benchmarks but useful for
                one-off visualization.
        """

        # copy things that we mutate
        local_config = deepcopy(config_dict)
        try:
            return super().run_experiment(problem, local_config, seed, rep)
        except Exception as e:

            logging.error(f"Error on config {config_dict}: {e}!" +
                          f"Traceback follows:\n{traceback.format_exc()}")

            return [], SequentialStrategy([])
示例#4
0
    def test_1d_jnd(self):
        seed = 1
        torch.manual_seed(seed)
        np.random.seed(seed)
        n_init = 150
        n_opt = 1
        lb = -4.0
        ub = 4.0

        target = 0.5

        def obj(x):
            return -((Normal(0, 1).cdf(x[..., 0]) - target) ** 2)

        strat_list = [
            Strategy(
                lb=lb,
                ub=ub,
                n_trials=n_init,
                generator=SobolGenerator(lb=lb, ub=ub, seed=seed),
            ),
            Strategy(
                lb=lb,
                ub=ub,
                model=GPClassificationModel(lb=lb, ub=ub, inducing_size=10),
                generator=OptimizeAcqfGenerator(
                    qUpperConfidenceBound, acqf_kwargs={"beta": 1.96}
                ),
                n_trials=n_opt,
            ),
        ]

        strat = SequentialStrategy(strat_list)

        for _i in range(n_init + n_opt):
            next_x = strat.gen()
            strat.add_data(next_x, [bernoulli.rvs(norm.cdf(next_x / 1.5))])

        x = torch.linspace(-4, 4, 100)

        zhat, _ = strat.predict(x)

        # we expect jnd close to the target to be close to the correct
        # jnd (1.5), and since this is linear model this should be true
        # for both definitions of JND
        jnd_step = strat.get_jnd(grid=x[:, None], method="step")
        est_jnd_step = jnd_step[50]
        # looser test because step-jnd is hurt more by reverting to the mean
        self.assertTrue(np.abs(est_jnd_step - 1.5) < 0.5)

        jnd_taylor = strat.get_jnd(grid=x[:, None], method="taylor")
        est_jnd_taylor = jnd_taylor[50]
        self.assertTrue(np.abs(est_jnd_taylor - 1.5) < 0.25)
示例#5
0
    def _configure(self, config):
        self.parnames = config.str_to_list(config.get("experiment",
                                                      "parnames"),
                                           element_type=str)
        self.outcome_type = config.get("common",
                                       "outcome_type",
                                       fallback="single_probit")

        self.strat = SequentialStrategy.from_config(config)
        self.strat_id = self.n_strats - 1  # 0-index strats
        return self.strat_id
示例#6
0
    def test_opt_strategy_single(self):
        strat_list = [
            SobolStrategy(lb=[-1], ub=[1], n_trials=3),
            SobolStrategy(lb=[-10], ub=[-8], n_trials=5),
        ]

        strat = SequentialStrategy(strat_list)
        out = np.zeros(8)
        for i in range(8):
            next_x = strat.gen()
            strat.add_data(next_x, [1])
            out[i] = next_x

        gen1 = out[:3]
        gen2 = out[3:]

        self.assertTrue(np.min(gen1) >= -1)
        self.assertTrue(np.min(gen2) >= -10)
        self.assertTrue(np.max(gen1) <= 1)
        self.assertTrue(np.max(gen2) <= -8)
示例#7
0
    def test_multiple_models_and_strats(self):
        config_str = """
        [common]
        lb = [0, 0]
        ub = [1, 1]
        outcome_type = single_probit
        parnames = [par1, par2]
        strategy_names = [init_strat, opt_strat1, opt_strat2]

        [init_strat]
        generator = SobolGenerator
        n_trials = 1

        [opt_strat1]
        generator = OptimizeAcqfGenerator
        n_trials = 1
        model = GPClassificationModel
        acqf = MCLevelSetEstimation

        [opt_strat2]
        generator = MonotonicRejectionGenerator
        n_trials = 1
        model = MonotonicRejectionGP
        acqf = MonotonicMCLSE
        """

        config = Config()
        config.update(config_str=config_str)

        strat = SequentialStrategy.from_config(config)

        self.assertTrue(
            isinstance(strat.strat_list[0].generator, SobolGenerator))
        self.assertTrue(strat.strat_list[0].model is None)

        self.assertTrue(
            isinstance(strat.strat_list[1].generator, OptimizeAcqfGenerator))
        self.assertTrue(
            isinstance(strat.strat_list[1].model, GPClassificationModel))
        self.assertTrue(
            strat.strat_list[1].generator.acqf is MCLevelSetEstimation)

        self.assertTrue(
            isinstance(strat.strat_list[2].generator,
                       MonotonicRejectionGenerator))
        self.assertTrue(
            isinstance(strat.strat_list[2].model, MonotonicRejectionGP))
        self.assertTrue(strat.strat_list[2].generator.acqf is MonotonicMCLSE)
示例#8
0
    def make_strat_and_flatconfig(
        self, config_dict: Mapping[str, str]
    ) -> Tuple[SequentialStrategy, Dict[str, str]]:
        """From a config dict, generate a strategy (for running) and
            flattened config (for logging)

        Args:
            config_dict (Mapping[str, str]): A run configuration dictionary.

        Returns:
            Tuple[SequentialStrategy, Dict[str,str]]: A tuple containing a strategy
                object and a flat config.
        """
        config = Config()
        config.update(config_dict=config_dict)
        strat = SequentialStrategy.from_config(config)
        flatconfig = self.flatten_config(config)
        return strat, flatconfig
示例#9
0
    def test_monotonic_single_probit_config_file(self):
        config_file = "../configs/single_lse_example.ini"
        config_file = os.path.join(os.path.dirname(__file__), config_file)

        config = Config()
        config.update(config_fnames=[config_file])
        strat = SequentialStrategy.from_config(config)

        self.assertTrue(
            isinstance(strat.strat_list[0].generator, SobolGenerator))
        self.assertTrue(strat.strat_list[0].model is None)

        self.assertTrue(
            isinstance(strat.strat_list[1].generator,
                       MonotonicRejectionGenerator))
        self.assertTrue(strat.strat_list[1].generator.acqf is MonotonicMCLSE)
        self.assertTrue(
            set(strat.strat_list[1].generator.acqf_kwargs.keys()) ==
            {"beta", "target", "objective"})
        self.assertTrue(
            strat.strat_list[1].generator.acqf_kwargs["target"] == 0.75)
        self.assertTrue(
            strat.strat_list[1].generator.acqf_kwargs["beta"] == 3.98)
        self.assertTrue(
            isinstance(
                strat.strat_list[1].generator.acqf_kwargs["objective"],
                ProbitObjective,
            ))
        self.assertTrue(strat.strat_list[1].generator.
                        model_gen_options["raw_samples"] == 1000)
        self.assertTrue(strat.strat_list[0].n_trials == 10)
        self.assertTrue(strat.strat_list[0].outcome_type == "single_probit")
        self.assertTrue(strat.strat_list[1].n_trials == 20)
        self.assertTrue(
            torch.all(strat.strat_list[0].lb == strat.strat_list[1].lb))
        self.assertTrue(
            torch.all(strat.strat_list[1].model.lb == torch.Tensor([0, 0])))
        self.assertTrue(
            torch.all(strat.strat_list[0].ub == strat.strat_list[1].ub))
        self.assertTrue(
            torch.all(strat.strat_list[1].model.ub == torch.Tensor([1, 1])))
示例#10
0
    def test_1d_single_targeting(self):

        seed = 1
        torch.manual_seed(seed)
        np.random.seed(seed)
        n_init = 50
        n_opt = 1
        lb = -4.0
        ub = 4.0

        target = 0.75

        def obj(x):
            return -((Normal(0, 1).cdf(x[..., 0]) - target) ** 2)

        strat_list = [
            Strategy(
                lb=lb,
                ub=ub,
                n_trials=n_init,
                generator=SobolGenerator(lb=lb, ub=ub, seed=seed),
            ),
            Strategy(
                lb=lb,
                ub=ub,
                model=GPClassificationModel(lb=lb, ub=ub, inducing_size=10),
                generator=OptimizeAcqfGenerator(
                    qUpperConfidenceBound, acqf_kwargs={"beta": 1.96}
                ),
                n_trials=n_opt,
            ),
        ]

        strat = SequentialStrategy(strat_list)

        for _i in range(n_init + n_opt):
            next_x = strat.gen()
            strat.add_data(next_x, [bernoulli.rvs(norm.cdf(next_x))])

        x = torch.linspace(-4, 4, 100)

        zhat, _ = strat.predict(x)

        # since target is 0.75, find the point at which f_est is 0.75
        est_max = x[np.argmin((norm.cdf(zhat.detach().numpy()) - 0.75) ** 2)]
        # since true z is just x, the true max is where phi(x)=0.75,
        self.assertTrue(np.abs(est_max - norm.ppf(0.75)) < 0.5)
示例#11
0
    def test_1d_single_lse(self):

        seed = 1
        torch.manual_seed(seed)
        np.random.seed(seed)
        n_init = 50
        n_opt = 1
        lb = -4.0
        ub = 4.0

        # target is in z space not phi(z) space, maybe that's
        # weird
        extra_acqf_args = {"target": 0.75, "beta": 1.96}

        strat_list = [
            Strategy(
                lb=lb,
                ub=ub,
                n_trials=n_init,
                generator=SobolGenerator(lb=lb, ub=ub, seed=seed),
            ),
            Strategy(
                lb=lb,
                ub=ub,
                model=GPClassificationModel(lb=lb, ub=ub, inducing_size=10),
                n_trials=n_opt,
                generator=OptimizeAcqfGenerator(
                    MCLevelSetEstimation, acqf_kwargs=extra_acqf_args
                ),
            ),
        ]

        strat = SequentialStrategy(strat_list)

        for _i in range(n_init + n_opt):
            next_x = strat.gen()
            strat.add_data(next_x, [bernoulli.rvs(norm.cdf(next_x))])

        x = torch.linspace(-4, 4, 100)

        zhat, _ = strat.predict(x)
        # since target is 0.75, find the point at which f_est is 0.75
        est_max = x[np.argmin((norm.cdf(zhat.detach().numpy()) - 0.75) ** 2)]
        # since true z is just x, the true max is where phi(x)=0.75,
        self.assertTrue(np.abs(est_max - norm.ppf(0.75)) < 0.5)
示例#12
0
    def test_1d_single_probit_pure_exploration(self):

        seed = 1
        torch.manual_seed(seed)
        np.random.seed(seed)
        n_init = 50
        n_opt = 1
        lb = -4.0
        ub = 4.0

        strat_list = [
            Strategy(
                lb=lb,
                ub=ub,
                n_trials=n_init,
                generator=SobolGenerator(lb=lb, ub=ub, seed=seed),
            ),
            Strategy(
                lb=lb,
                ub=ub,
                model=GPClassificationModel(lb=lb, ub=ub, inducing_size=10),
                generator=OptimizeAcqfGenerator(
                    qUpperConfidenceBound, acqf_kwargs={"beta": 1.96}
                ),
                n_trials=n_opt,
            ),
        ]

        strat = SequentialStrategy(strat_list)

        for _i in range(n_init + n_opt):
            next_x = strat.gen()
            strat.add_data(next_x, [bernoulli.rvs(norm.cdf(next_x))])

        x = torch.linspace(-4, 4, 100)

        zhat, _ = strat.predict(x)

        # f(x) = x so we're just looking at corr between cdf(zhat) and cdf(x)
        self.assertTrue(
            pearsonr(norm.cdf(zhat.detach().numpy()).flatten(), norm.cdf(x).flatten())[
                0
            ]
            > 0.95
        )
示例#13
0
    def test_opt_strategy_single(self):
        lbs = [[-1], [-10]]
        ubs = [[1], [-8]]
        n = [3, 5]
        strat_list = []
        for lb, ub, n in zip(lbs, ubs, n):
            gen = SobolGenerator(lb, ub)
            strat = Strategy(n, gen, lb, ub)
            strat_list.append(strat)

        strat = SequentialStrategy(strat_list)
        out = np.zeros(8)
        for i in range(8):
            next_x = strat.gen()
            strat.add_data(next_x, [1])
            out[i] = next_x

        gen1 = out[:3]
        gen2 = out[3:]

        self.assertTrue(np.min(gen1) >= -1)
        self.assertTrue(np.min(gen2) >= -10)
        self.assertTrue(np.max(gen1) <= 1)
        self.assertTrue(np.max(gen2) <= -8)
示例#14
0
    def test_nonmonotonic_optimization_config_file(self):
        config_file = "../configs/nonmonotonic_optimization_example.ini"
        config_file = os.path.join(os.path.dirname(__file__), config_file)

        config = Config()
        config.update(config_fnames=[config_file])
        strat = SequentialStrategy.from_config(config)

        self.assertTrue(
            isinstance(strat.strat_list[0].generator, SobolGenerator))
        self.assertTrue(strat.strat_list[0].model is None)

        self.assertTrue(
            isinstance(strat.strat_list[1].generator, OptimizeAcqfGenerator))
        self.assertTrue(
            strat.strat_list[1].generator.acqf is qNoisyExpectedImprovement)
        self.assertTrue(
            set(strat.strat_list[1].generator.acqf_kwargs.keys()) ==
            {"objective"})
        self.assertTrue(
            isinstance(
                strat.strat_list[1].generator.acqf_kwargs["objective"],
                ProbitObjective,
            ))

        self.assertTrue(strat.strat_list[0].n_trials == 10)
        self.assertTrue(strat.strat_list[0].outcome_type == "single_probit")
        self.assertTrue(strat.strat_list[1].n_trials == 20)
        self.assertTrue(
            torch.all(strat.strat_list[0].lb == strat.strat_list[1].lb))
        self.assertTrue(
            torch.all(strat.strat_list[1].model.lb == torch.Tensor([0, 0])))
        self.assertTrue(
            torch.all(strat.strat_list[0].ub == strat.strat_list[1].ub))
        self.assertTrue(
            torch.all(strat.strat_list[1].model.ub == torch.Tensor([1, 1])))
示例#15
0
    def test_1d_single_probit(self):

        seed = 1
        torch.manual_seed(seed)
        np.random.seed(seed)
        n_init = 15
        n_opt = 20
        lb = -4.0
        ub = 4.0
        acqf = BernoulliMCMutualInformation
        extra_acqf_args = {"objective": ProbitObjective()}

        model_list = [
            Strategy(
                lb=lb,
                ub=ub,
                n_trials=n_init,
                generator=SobolGenerator(lb=lb, ub=ub, seed=seed),
            ),
            Strategy(
                lb=lb,
                ub=ub,
                model=GPClassificationModel(lb=lb, ub=ub, dim=1, inducing_size=10),
                generator=OptimizeAcqfGenerator(acqf, extra_acqf_args),
                n_trials=n_opt,
            ),
        ]

        strat = SequentialStrategy(model_list)

        for _i in range(n_init + n_opt):
            next_x = strat.gen()
            strat.add_data(next_x, [bernoulli.rvs(f_1d(next_x))])

        x = torch.linspace(-4, 4, 100)

        zhat, _ = strat.predict(x)

        true = f_1d(x.detach().numpy())
        est = zhat.detach().numpy()

        # close enough!
        self.assertTrue((((norm.cdf(est) - true) ** 2).mean()) < 0.25)
示例#16
0
    def test_1d_monotonic_single_probit(self):

        seed = 1
        torch.manual_seed(seed)
        np.random.seed(seed)
        n_init = 15
        n_opt = 1
        lb = -4.0
        ub = 4.0
        acqf = MonotonicBernoulliMCMutualInformation
        acqf_kwargs = {"objective": ProbitObjective()}
        model_list = [
            Strategy(
                lb=lb,
                ub=ub,
                n_trials=n_init,
                generator=SobolGenerator(lb=lb, ub=ub, seed=seed),
            ),
            Strategy(
                lb=lb,
                ub=ub,
                n_trials=n_opt,
                model=MonotonicRejectionGP(lb=lb, ub=ub, dim=1, monotonic_idxs=[0]),
                generator=MonotonicRejectionGenerator(acqf, acqf_kwargs),
            ),
        ]

        strat = SequentialStrategy(model_list)

        for _i in range(n_init + n_opt):
            next_x = strat.gen()
            strat.add_data(next_x, [bernoulli.rvs(f_1d(next_x))])

        x = torch.linspace(-4, 4, 100).reshape(-1, 1)

        zhat, _ = strat.predict(x)

        true = f_1d(x.detach().numpy())
        est = zhat.detach().numpy()

        # close enough!
        self.assertTrue((((norm.cdf(est) - true) ** 2).mean()) < 0.25)
示例#17
0
    def test_2d_single_probit_pure_exploration(self):
        seed = 1
        torch.manual_seed(seed)
        np.random.seed(seed)
        n_init = 50
        n_opt = 1
        lb = [-1, -1]
        ub = [1, 1]

        strat_list = [
            Strategy(
                lb=lb,
                ub=ub,
                n_trials=n_init,
                generator=SobolGenerator(lb=lb, ub=ub, seed=seed),
            ),
            Strategy(
                lb=lb,
                ub=ub,
                model=GPClassificationModel(lb=lb, ub=ub, inducing_size=10),
                generator=OptimizeAcqfGenerator(
                    qUpperConfidenceBound, acqf_kwargs={"beta": 1.96}
                ),
                n_trials=n_opt,
            ),
        ]

        strat = SequentialStrategy(strat_list)

        for _i in range(n_init + n_opt):
            next_x = strat.gen()
            strat.add_data(next_x, [bernoulli.rvs(cdf_new_novel_det(next_x))])

        xy = np.mgrid[-1:1:30j, -1:1:30j].reshape(2, -1).T
        post_mean, _ = strat.predict(torch.Tensor(xy))
        phi_post_mean = norm.cdf(post_mean.reshape(30, 30).detach().numpy())

        phi_post_true = cdf_new_novel_det(xy)

        self.assertTrue(
            pearsonr(phi_post_mean.flatten(), phi_post_true.flatten())[0] > 0.9
        )
示例#18
0
    def test_1d_single_probit_new_interface(self):

        seed = 1
        torch.manual_seed(seed)
        np.random.seed(seed)
        n_init = 50
        n_opt = 1
        lb = -4.0
        ub = 4.0

        model_list = [
            Strategy(
                lb=lb,
                ub=ub,
                n_trials=n_init,
                generator=SobolGenerator(lb=lb, ub=ub, seed=seed),
            ),
            Strategy(
                lb=lb,
                ub=ub,
                model=GPClassificationModel(lb=lb, ub=ub, inducing_size=10),
                generator=OptimizeAcqfGenerator(
                    qUpperConfidenceBound, acqf_kwargs={"beta": 1.96}
                ),
                n_trials=n_opt,
            ),
        ]

        strat = SequentialStrategy(model_list)

        while not strat.finished:
            next_x = strat.gen()
            strat.add_data(next_x, [bernoulli.rvs(f_1d(next_x))])

        self.assertTrue(strat.y.shape[0] == n_init + n_opt)

        x = torch.linspace(-4, 4, 100)

        zhat, _ = strat.predict(x)

        # true max is 0, very loose test
        self.assertTrue(np.abs(x[np.argmax(zhat.detach().numpy())]) < 0.5)
示例#19
0
    def test_1d_monotonic_single_probit(self):

        seed = 1
        torch.manual_seed(seed)
        np.random.seed(seed)
        n_init = 15
        n_opt = 1
        lb = -4.0
        ub = 4.0
        acqf = MonotonicBernoulliMCMutualInformation
        extra_acqf_args = {"objective": ProbitObjective()}
        model = MonotonicRejectionGP(likelihood="probit-bernoulli", monotonic_idxs=[0])
        model_list = [
            SobolStrategy(lb=lb, ub=ub, seed=seed, n_trials=n_init),
            ModelWrapperStrategy(
                modelbridge=MonotonicSingleProbitModelbridge(
                    lb=lb,
                    ub=ub,
                    dim=1,
                    acqf=acqf,
                    extra_acqf_args=extra_acqf_args,
                    model=model,
                ),
                n_trials=n_opt,
            ),
        ]

        strat = SequentialStrategy(model_list)

        for _i in range(n_init + n_opt):
            next_x = strat.gen()
            strat.add_data(next_x, [bernoulli.rvs(f_1d(next_x))])

        x = torch.linspace(-4, 4, 100)

        zhat, _ = strat.predict(x)

        true = f_1d(x.detach().numpy())
        est = zhat.detach().numpy()

        # close enough!
        self.assertTrue((((norm.cdf(est) - true) ** 2).mean()) < 0.25)
示例#20
0
    def test_extra_ask_warns(self):
        # test that when we ask more times than we have models, we warn but keep going
        seed = 1
        torch.manual_seed(seed)
        np.random.seed(seed)
        n_init = 3
        n_opt = 1
        lb = -4.0
        ub = 4.0

        model_list = [
            Strategy(
                lb=lb,
                ub=ub,
                n_trials=n_init,
                generator=SobolGenerator(lb=lb, ub=ub, seed=seed),
            ),
            Strategy(
                lb=lb,
                ub=ub,
                model=GPClassificationModel(lb=lb, ub=ub, inducing_size=10),
                generator=OptimizeAcqfGenerator(
                    qUpperConfidenceBound, acqf_kwargs={"beta": 1.96}
                ),
                n_trials=n_opt,
            ),
        ]

        strat = SequentialStrategy(model_list)

        for _i in range(n_init + n_opt):
            next_x = strat.gen()
            strat.add_data(next_x, [bernoulli.rvs(norm.cdf(f_1d(next_x)))])

        with self.assertWarns(RuntimeWarning):
            strat.gen()
示例#21
0
    def test_2d_single_probit(self):

        seed = 1
        torch.manual_seed(seed)
        np.random.seed(seed)
        n_init = 150
        n_opt = 1
        lb = [-1, -1]
        ub = [1, 1]

        strat_list = [
            Strategy(
                lb=lb,
                ub=ub,
                n_trials=n_init,
                generator=SobolGenerator(lb=lb, ub=ub, seed=seed),
            ),
            Strategy(
                lb=lb,
                ub=ub,
                model=GPClassificationModel(lb=lb, ub=ub, inducing_size=20),
                generator=OptimizeAcqfGenerator(
                    qUpperConfidenceBound, acqf_kwargs={"beta": 1.96}
                ),
                n_trials=n_opt,
            ),
        ]

        strat = SequentialStrategy(strat_list)

        for _i in range(n_init + n_opt):
            next_x = strat.gen()
            strat.add_data(next_x, [bernoulli.rvs(f_2d(next_x[None, :]))])

        xy = np.mgrid[-1:1:30j, -1:1:30j].reshape(2, -1).T
        zhat, _ = strat.predict(torch.Tensor(xy))

        self.assertTrue(np.all(np.abs(xy[np.argmax(zhat.detach().numpy())]) < 0.5))
示例#22
0
 def make_strat_and_flatconfig(self, config_dict):
     config = Config()
     config.update(config_dict=config_dict)
     strat = SequentialStrategy.from_config(config)
     flatconfig = self.flatten_config(config)
     return strat, flatconfig
示例#23
0
    def test_single_probit_config(self):
        config_str = """
        [common]
        lb = [0, 0]
        ub = [1, 1]
        outcome_type = single_probit
        parnames = [par1, par2]
        strategy_names = [init_strat, opt_strat]
        model = GPClassificationModel
        acqf = MCLevelSetEstimation

        [init_strat]
        generator = SobolGenerator
        n_trials = 10

        [opt_strat]
        generator = OptimizeAcqfGenerator
        n_trials = 20

        [MCLevelSetEstimation]
        beta = 3.98
        objective = ProbitObjective

        [GPClassificationModel]
        inducing_size = 10
        mean_covar_factory = default_mean_covar_factory

        [OptimizeAcqfGenerator]
        restarts = 10
        samps = 1000
        """
        config = Config()
        config.update(config_str=config_str)

        strat = SequentialStrategy.from_config(config)

        self.assertTrue(
            isinstance(strat.strat_list[0].generator, SobolGenerator))
        self.assertTrue(
            isinstance(strat.strat_list[1].generator, OptimizeAcqfGenerator))
        self.assertTrue(
            isinstance(strat.strat_list[1].model, GPClassificationModel))
        self.assertTrue(
            strat.strat_list[1].generator.acqf is MCLevelSetEstimation)
        # since ProbitObjective() is turned into an obj, we check for keys and then vals
        self.assertTrue(
            set(strat.strat_list[1].generator.acqf_kwargs.keys()) ==
            {"beta", "target", "objective"})
        self.assertTrue(
            strat.strat_list[1].generator.acqf_kwargs["target"] == 0.75)
        self.assertTrue(
            strat.strat_list[1].generator.acqf_kwargs["beta"] == 3.98)
        self.assertTrue(
            isinstance(
                strat.strat_list[1].generator.acqf_kwargs["objective"],
                ProbitObjective,
            ))

        self.assertTrue(strat.strat_list[1].generator.restarts == 10)
        self.assertTrue(strat.strat_list[1].generator.samps == 1000)
        self.assertTrue(strat.strat_list[0].n_trials == 10)
        self.assertTrue(strat.strat_list[0].outcome_type == "single_probit")
        self.assertTrue(strat.strat_list[1].n_trials == 20)
        self.assertTrue(
            torch.all(strat.strat_list[0].lb == strat.strat_list[1].lb))
        self.assertTrue(
            torch.all(strat.strat_list[1].model.lb == torch.Tensor([0, 0])))
        self.assertTrue(
            torch.all(strat.strat_list[0].ub == strat.strat_list[1].ub))
        self.assertTrue(
            torch.all(strat.strat_list[1].model.ub == torch.Tensor([1, 1])))
示例#24
0
    def test_single_probit_config(self):
        config_str = """
        [common]
        lb = [0, 0]
        ub = [1, 1]
        outcome_type = single_probit
        parnames = [par1, par2]

        [experiment]
        acqf = LevelSetEstimation
        modelbridge_cls = SingleProbitModelbridge
        init_strat_cls = SobolStrategy
        opt_strat_cls = ModelWrapperStrategy

        [LevelSetEstimation]
        beta = 3.98

        [GPClassificationModel]
        inducing_size = 10
        mean_covar_factory = default_mean_covar_factory

        [SingleProbitModelbridge]
        restarts = 10
        samps = 1000

        [SobolStrategy]
        n_trials = 10

        [ModelWrapperStrategy]
        n_trials = 20
        """
        config = Config()
        config.update(config_str=config_str)

        strat = SequentialStrategy.from_config(config)

        self.assertTrue(isinstance(strat.strat_list[0], SobolStrategy))
        self.assertTrue(isinstance(strat.strat_list[1], ModelWrapperStrategy))
        self.assertTrue(
            isinstance(strat.strat_list[1].modelbridge,
                       SingleProbitModelbridge))
        self.assertTrue(
            strat.strat_list[1].modelbridge.acqf is LevelSetEstimation)
        # since ProbitObjective() is turned into an obj, we check for keys and then vals
        self.assertTrue(
            set(strat.strat_list[1].modelbridge.extra_acqf_args.keys()) ==
            {"beta", "target", "objective"})
        self.assertTrue(
            strat.strat_list[1].modelbridge.extra_acqf_args["target"] == 0.75)
        self.assertTrue(
            strat.strat_list[1].modelbridge.extra_acqf_args["beta"] == 3.98)
        self.assertTrue(
            isinstance(
                strat.strat_list[1].modelbridge.extra_acqf_args["objective"],
                ProbitObjective,
            ))

        self.assertTrue(strat.strat_list[1].modelbridge.restarts == 10)
        self.assertTrue(strat.strat_list[1].modelbridge.samps == 1000)
        self.assertTrue(strat.strat_list[0].n_trials == 10)
        self.assertTrue(strat.strat_list[0].outcome_type == "single_probit")
        self.assertTrue(strat.strat_list[1].n_trials == 20)
        self.assertTrue(
            torch.all(strat.strat_list[0].lb == strat.strat_list[1].lb))
        self.assertTrue(
            torch.all(
                strat.strat_list[1].modelbridge.lb == torch.Tensor([0, 0])))
        self.assertTrue(
            torch.all(strat.strat_list[0].ub == strat.strat_list[1].ub))
        self.assertTrue(
            torch.all(
                strat.strat_list[1].modelbridge.ub == torch.Tensor([1, 1])))
示例#25
0
def plot_acquisition_examples(sobol_trials, opt_trials, target_level=0.75):
    ### Same model, different acqf figure ####

    configs = {
        "common": {
            "pairwise": False,
            "target": target_level,
            "lb": "[-3]",
            "ub": "[3]",
        },
        "experiment": {
            "acqf": [
                "MonotonicMCPosteriorVariance",
                "MonotonicBernoulliMCMutualInformation",
                "MonotonicMCLSE",
            ],
            "modelbridge_cls":
            "MonotonicSingleProbitModelbridge",
            "init_strat_cls":
            "SobolStrategy",
            "opt_strat_cls":
            "ModelWrapperStrategy",
            "model":
            "MonotonicRejectionGP",
            "parnames":
            "[intensity]",
        },
        "MonotonicMCLSE": {
            "target": target_level,
            "beta": 3.98,
        },
        "MonotonicRejectionGP": {
            "inducing_size": 100,
            "mean_covar_factory": "monotonic_mean_covar_factory",
            "monotonic_idxs": "[0]",
            "uniform_idxs": "[]",
        },
        "MonotonicSingleProbitModelbridge": {
            "restarts": 10,
            "samps": 1000
        },
        "SobolStrategy": {
            "n_trials": sobol_trials
        },
        "ModelWrapperStrategy": {
            "n_trials": opt_trials,
            "refit_every": refit_every,
        },
    }

    def true_testfun(x):
        return norm.cdf(3 * x)

    class SimpleLinearProblem(Problem):
        def f(self, x):
            return norm.ppf(true_testfun(x))

    lb = [-3]
    ub = [3]

    logger = BenchmarkLogger()
    problem = SimpleLinearProblem(lb, ub)
    bench = Benchmark(
        problem=problem,
        logger=logger,
        configs=configs,
        global_seed=global_seed,
        n_reps=1,
    )

    # sobol_trials
    # now run each for just init trials, taking care to reseed each time
    strats = []
    for c in bench.combinations:
        np.random.seed(global_seed)
        torch.manual_seed(global_seed)
        s = SequentialStrategy.from_config(Config(config_dict=c))
        for _ in range(sobol_trials):
            next_x = s.gen()
            s.add_data(next_x, [problem.sample_y(next_x)])
        strats.append(s)

    # get first gen from all 3
    first_gens = [s.gen() for s in strats]

    fig, ax = plt.subplots(2, 2)
    plot_strat(
        strat=strats[0],
        title=f"First active trial\n (after {sobol_trials} Sobol trials)",
        ax=ax[0, 0],
        true_testfun=true_testfun,
        target_level=target_level,
        show=False,
        include_legend=False)
    samps = [
        norm.cdf(s.sample(torch.Tensor(g), num_samples=10000))
        for s, g in zip(strats, first_gens)
    ]
    predictions = [np.mean(s) for s in samps]
    names = ["First BALV sample", "First BALD sample", "First LSE sample"]
    markers = ["s", "*", "^"]
    for i in range(3):
        ax[0, 0].scatter(
            first_gens[i][0][0],
            predictions[i],
            label=names[i],
            marker=markers[i],
            color="black",
        )

    # now run them all for the full duration
    for s in strats:
        for _tr in range(opt_trials):
            next_x = s.gen()
            s.add_data(next_x, [problem.sample_y(next_x)])

    plotting_axes = [ax[0, 1], ax[1, 0], ax[1, 1]]

    titles = [
        f"Monotonic RBF Model,\n BALV, after {sobol_trials+opt_trials} total trials",
        f"Monotonic RBF Model,\n BALD, after {sobol_trials+opt_trials} total trials",
        f"Monotonic RBF Model,\n LSE (ours) after {sobol_trials+opt_trials} total trials",
    ]

    _ = [
        plot_strat(strat=s,
                   title=t,
                   ax=a,
                   true_testfun=true_testfun,
                   target_level=target_level,
                   show=False,
                   include_legend=False)
        for a, s, t in zip(plotting_axes, strats, titles)
    ]
    fig.tight_layout()
    handles, labels = ax[0, 0].get_legend_handles_labels()
    lgd = fig.legend(handles,
                     labels,
                     loc="lower right",
                     bbox_to_anchor=(1.5, 0.25))
    # return legend so savefig works correctly
    return fig, lgd