示例#1
0
    def build_graphs(self) -> None:
        """Builds graphs for all modes currently available in the model

        When called, it overwrites all graphs previously created and stored in the networks'
        dictionary of graphs
        """
        curr = self.conn.cursor()
        curr.execute('PRAGMA table_info(links);')
        field_names = curr.fetchall()

        ignore_fields = ['ogc_fid', 'geometry']
        all_fields = [f[1] for f in field_names if f[1] not in ignore_fields]

        raw_links = curr.execute(
            f"select {','.join(all_fields)} from links").fetchall()
        links = []
        for l in raw_links:
            lk = list(map(lambda x: np.nan if x is None else x, l))
            links.append(lk)

        data = np.core.records.fromrecords(links, names=all_fields)

        valid_fields = []
        removed_fields = []
        for f in all_fields:
            if np.issubdtype(data[f].dtype, np.floating) or np.issubdtype(
                    data[f].dtype, np.integer):
                valid_fields.append(f)
            else:
                removed_fields.append(f)
        if len(removed_fields) > 1:
            warn(
                f'Fields were removed form Graph for being non-numeric: {",".join(removed_fields)}'
            )

        curr.execute('select node_id from nodes where is_centroid=1;')
        centroids = np.array([i[0] for i in curr.fetchall()], np.uint32)

        modes = curr.execute('select mode_id from modes;').fetchall()
        modes = [m[0] for m in modes]

        for m in modes:
            w = np.core.defchararray.find(data['modes'], m)
            net = np.array(data[valid_fields], copy=True)
            net['b_node'][w < 0] = net['a_node'][w < 0]

            g = Graph()
            g.mode = m
            g.network = net
            g.network_ok = True
            g.status = 'OK'
            g.prepare_graph(centroids)
            g.set_blocked_centroid_flows(True)
            self.graphs[m] = g
示例#2
0
    def assign_matrix(self, matrix: AequilibraeMatrix, result_name: str):
        conn = database_connection()

        sql = f"select link_id, direction, a_node, b_node, distance, 1 capacity from {DELAUNAY_TABLE}"

        df = pd.read_sql(sql, conn)
        centroids = np.array(np.unique(np.hstack((df.a_node.values, df.b_node.values))), int)

        g = Graph()
        g.mode = 'delaunay'
        g.network = df
        g.prepare_graph(centroids)
        g.set_blocked_centroid_flows(True)

        tc = TrafficClass('delaunay', g, matrix)
        ta = TrafficAssignment()
        ta.set_classes([tc])
        ta.set_time_field('distance')
        ta.set_capacity_field('capacity')
        ta.set_vdf('BPR')
        ta.set_vdf_parameters({"alpha": 0, "beta": 1.0})
        ta.set_algorithm('all-or-nothing')
        ta.execute()

        report = {"setup": str(ta.info())}
        data = [result_name, "Delaunay assignment", self.procedure_id, str(report), ta.procedure_date, '']
        conn.execute("""Insert into results(table_name, procedure, procedure_id, procedure_report, timestamp,
                                            description) Values(?,?,?,?,?,?)""", data)
        conn.commit()
        conn.close()

        cols = []
        for x in matrix.view_names:
            cols.extend([f'{x}_ab', f'{x}_ba', f'{x}_tot'])
        df = ta.results()[cols]
        conn = sqlite3.connect(join(environ[ENVIRON_VAR], "results_database.sqlite"))
        df.to_sql(result_name, conn)
        conn.close()
示例#3
0
class TestGraph(TestCase):

    def test_create_from_geography(self):
        self.graph = Graph()
        self.graph.create_from_geography(
            test_network, 'link_id', 'dir', 'distance', centroids=centroids, skim_fields = [], anode="A_NODE",
            bnode="B_NODE")
        self.graph.set_graph(cost_field='distance', block_centroid_flows=True)

    def test_load_network_from_csv(self):
        pass

    def test_prepare_graph(self):
        self.test_create_from_geography()
        self.graph.prepare_graph(centroids)

        reference_graph = Graph()
        reference_graph.load_from_disk(test_graph)
        if not np.array_equal(self.graph.graph, reference_graph.graph):
            self.fail('Reference graph and newly-prepared graph are not equal')

    def test_set_graph(self):
        self.test_prepare_graph()
        self.graph.set_graph(cost_field='distance',block_centroid_flows=True)
        if self.graph.num_zones != centroids.shape[0]:
            self.fail('Number of centroids not properly set')
        if self.graph.num_links != 222:
            self.fail('Number of links not properly set')
        if self.graph.num_nodes != 93:
            self.fail('Number of nodes not properly set - ' + str(self.graph.num_nodes))

    def test_save_to_disk(self):
        self.test_create_from_geography()
        self.graph.save_to_disk(join(path_test, 'aequilibrae_test_graph.aeg'))
        self.graph_id = self.graph.__id__
        self.graph_version = self.graph.__version__

    def test_load_from_disk(self):
        self.test_save_to_disk()
        reference_graph = Graph()
        reference_graph.load_from_disk(test_graph)

        new_graph = Graph()
        new_graph.load_from_disk(join(path_test, 'aequilibrae_test_graph.aeg'))

        comparisons = [('Graph', new_graph.graph, reference_graph.graph),
                       ('b_nodes', new_graph.b_node, reference_graph.b_node),
                       ('Forward-Star', new_graph.fs, reference_graph.fs),
                       ('cost', new_graph.cost, reference_graph.cost),
                       ('centroids', new_graph.centroids, reference_graph.centroids),
                       ('skims', new_graph.skims, reference_graph.skims),
                       ('link ids', new_graph.ids, reference_graph.ids),
                       ('Network', new_graph.network, reference_graph.network),
                       ('All Nodes', new_graph.all_nodes, reference_graph.all_nodes),
                       ('Nodes to indices', new_graph.nodes_to_indices, reference_graph.nodes_to_indices)]

        for comparison, newg, refg in comparisons:
            if not np.array_equal(newg, refg):
                self.fail('Reference %s and %s created and saved to disk are not equal' %(comparison, comparison))

        comparisons = [('nodes', new_graph.num_nodes, reference_graph.num_nodes),
                       ('links', new_graph.num_links, reference_graph.num_links),
                       ('zones', new_graph.num_zones, reference_graph.num_zones),
                       ('block through centroids', new_graph.block_centroid_flows, reference_graph.block_centroid_flows),
                       ('Graph ID', new_graph.__id__, self.graph_id),
                       ('Graph Version', new_graph.__version__, self.graph_version)]

        for comparison, newg, refg in comparisons:
            if newg != refg:
                self.fail('Reference %s and %s created and saved to disk are not equal' %(comparison, comparison))

    def test_reset_single_fields(self):
        pass

    def test_add_single_field(self):
        pass

    def test_available_skims(self):
        self.test_set_graph()
        if self.graph.available_skims() != ['distance']:
            self.fail('Skim availability with problems')
示例#4
0
class GraphCreation(WorkerThread):
    def __init__(self, parentThread, net_layer, link_id, direction_field, fields_to_add, selected_only):
        WorkerThread.__init__(self, parentThread)
        self.net_layer = net_layer
        self.link_id = link_id
        self.direction_field = direction_field
        self.fields_to_add = fields_to_add
        self.selected_only = selected_only
        self.features = None
        self.error = None
        self.report = []
        self.feat_count = 0

        self.bi_directional = False
        if direction_field is not None:
            self.bi_directional = True

    def doWork(self):
        if self.selected_only:
            self.features = self.net_layer.selectedFeatures()
            self.feat_count = self.net_layer.selectedFeatureCount()
        else:
            self.features = self.net_layer.getFeatures()
            self.feat_count = self.net_layer.featureCount()

        # Checking ID uniqueness
        self.report.append(reporter("Checking ID uniqueness", 0))
        self.emit(SIGNAL("ProgressText ( PyQt_PyObject )"),"Checking ID uniqueness. Please wait")
        all_ids = self.net_layer.uniqueValues(self.link_id)

        if NULL in all_ids:
            self.error = "ID field has NULL values"
            self.report.append(self.error)
        else:
            if len(all_ids) < self.feat_count:
                self.error = 'IDs are not unique.'
                self.report.append(self.error)

        if self.error is None:
            self.report.append(reporter('Loading data from layer', 0))
            self.emit(SIGNAL("ProgressText ( PyQt_PyObject )"),"Loading data from layer")
            self.emit(SIGNAL("ProgressValue( PyQt_PyObject )"), 0)
            self.emit(SIGNAL("ProgressMaxValue( PyQt_PyObject )"), self.feat_count)

            self.graph = Graph()

            all_types = [np.int32, np.int32, np.int32, np.int8]
            all_titles = [reserved_fieds.link_id, reserved_fieds.a_node, reserved_fieds.b_node, reserved_fieds.direction]

            for name_field, values in self.fields_to_add.iteritems():
                all_titles.append((name_field + '_ab').encode('ascii','ignore'))
                all_types.append(np.float64)
                all_titles.append((name_field + '_ba').encode('ascii','ignore'))
                all_types.append(np.float64)

            dt = [(t, d) for t, d in zip(all_titles, all_types)]

            a_node = self.net_layer.fieldNameIndex(reserved_fieds.a_node)
            b_node = self.net_layer.fieldNameIndex(reserved_fieds.b_node)
            data = []

            for p, feat in enumerate(self.features):
                line = []
                line.append(feat.attributes()[self.link_id])
                line.append(feat.attributes()[a_node])
                line.append(feat.attributes()[b_node])
                if self.bi_directional:
                    line.append(feat.attributes()[self.direction_field])
                else:
                    line.append(1)

                # We append the data fields now
                for k, v in self.fields_to_add.iteritems():
                    a, b = v
                    line.append(feat.attributes()[a])
                    if self.bi_directional:
                        line.append(feat.attributes()[b])
                    else:
                        line.append(-1)

                for k in line:
                    if k == NULL:
                        t = ','.join([str(x) for x in line])
                        self.error = 'Field with NULL value - ID:' + str(line[0]) + "  /  " + t
                        break
                if self.error is not None:
                    break
                data.append(line)

                if p % 50 == 0:
                    self.emit(SIGNAL("ProgressValue( PyQt_PyObject )"), p)

            if self.error is None:
                self.report.append(reporter('Converting data to graph', 0))
                network = np.asarray(data)

                self.graph.network = np.zeros(network.shape[0], dtype=dt)

                for k, t in enumerate(dt):
                    self.graph.network[t[0]] = network[:,k].astype(t[1])
                del network

                self.graph.type_loaded = 'NETWORK'
                self.graph.status = 'OK'
                self.graph.network_ok = True
                self.graph.prepare_graph()
                self.graph.__source__ = None
                self.graph.__field_name__ = None
                self.graph.__layer_name__ = None

        self.report.append(reporter('Process finished', 0))
        self.emit(SIGNAL("finished_threaded_procedure( PyQt_PyObject )"), None)
示例#5
0
class GraphCreation(WorkerThread):
    def __init__(self, parentThread, netlayer, linkid, ablength, bidirectional,
                 directionfield, balength, skims, selected_only, featcount):
        WorkerThread.__init__(self, parentThread)
        self.netlayer = netlayer
        self.linkid = linkid
        self.ablength = ablength
        self.balength = balength
        self.bidirectional = bidirectional
        self.directionfield = directionfield
        self.skims = skims
        self.selected_only = selected_only
        self.features = None
        self.featcount = featcount
        self.error = None

    def doWork(self):
        # Checking ID uniqueness
        self.emit(SIGNAL("ProgressText ( PyQt_PyObject )"),
                  "Checking ID uniqueness")
        self.emit(SIGNAL("ProgressMaxValue( PyQt_PyObject )"), self.featcount)

        a = []
        all_ids = np.zeros(self.featcount, dtype=np.int_)

        if self.selected_only:
            self.features = self.netlayer.selectedFeatures()
        else:
            self.features = self.netlayer.getFeatures()

        p = 0
        for feat in self.features:
            k = feat.attributes()[self.linkid]
            if k == NULL:
                self.error = "ID field has NULL values"
                break
            else:
                all_ids[p] = k
                p += 1
                if p % 50 == 0:
                    self.emit(SIGNAL("ProgressValue( PyQt_PyObject )"), p)
        self.emit(SIGNAL("ProgressValue( PyQt_PyObject )"), self.featcount)

        if self.error is None:
            # Checking uniqueness
            y = np.bincount(all_ids)
            if np.max(y) > 1:
                self.error = 'IDs are not unique.'

        if self.error is None:
            self.emit(SIGNAL("ProgressText ( PyQt_PyObject )"),
                      "Loading data from layer")
            self.emit(SIGNAL("ProgressValue( PyQt_PyObject )"), 0)

            self.graph = Graph()

            all_types = [
                np.int64, np.int64, np.int64, np.float64, np.float64, np.int64
            ]
            all_titles = [
                'link_id', 'a_node', 'b_node', 'length_ab', 'length_ba',
                'direction'
            ]

            dict_field = {}
            for k in self.skims:
                a, b, t = self.skims[k]
                all_types.append(np.float64)
                all_types.append(np.float64)
                all_titles.append((k + '_ab').encode('ascii', 'ignore'))
                all_titles.append((k + '_ba').encode('ascii', 'ignore'))

                dict_field[k + '_ab'] = a
                if self.bidirectional:
                    dict_field[k + '_ba'] = b
                else:
                    dict_field[k + '_ba'] = -1

            dt = [(t, d) for t, d in zip(all_titles, all_types)]

            anode = self.netlayer.fieldNameIndex('A_Node')
            bnode = self.netlayer.fieldNameIndex('B_Node')
            data = []

            if self.selected_only:
                self.features = self.netlayer.selectedFeatures()
            else:
                self.features = self.netlayer.getFeatures()

            p = 0
            for feat in self.features:
                line = []
                line.append(feat.attributes()[self.linkid])
                line.append(feat.attributes()[anode])
                line.append(feat.attributes()[bnode])
                line.append(feat.attributes()[self.ablength])
                if self.bidirectional:
                    line.append(feat.attributes()[self.balength])
                    line.append(feat.attributes()[self.directionfield])
                else:
                    line.append(-1)
                    line.append(1)

                # We append the skims now
                for k in all_titles:
                    if k in dict_field:
                        if dict_field[k] >= 0:
                            line.append(feat.attributes()[dict_field[k]])
                        else:
                            line.append(-1)

                for k in line:
                    if k == NULL:
                        t = ''
                        for j in line:
                            t = t + ',' + str(j)
                        self.error = 'Field with NULL value - ID:' + str(
                            line[0]) + "  /  " + t
                        break
                if self.error is not None:
                    break
                data.append(line)

                p += 1
                if p % 50 == 0:
                    self.emit(SIGNAL("ProgressValue( PyQt_PyObject )"), p)

            if self.error is None:
                network = np.asarray(data)
                del data

                self.graph.network = np.zeros(network.shape[0], dtype=dt)
                for k, t in enumerate(dt):
                    self.graph.network[t[0]] = network[:, k].astype(t[1])
                del network

                self.graph.type_loaded = 'NETWORK'
                self.graph.status = 'OK'
                self.graph.network_ok = True
                self.graph.prepare_graph()
                self.graph.__source__ = None
                self.graph.__field_name__ = None
                self.graph.__layer_name__ = None

        self.emit(SIGNAL("FinishedThreadedProcedure( PyQt_PyObject )"), None)
示例#6
0
class TestGraph(TestCase):
    def test_create_from_geography(self):
        self.graph = Graph()
        self.graph.create_from_geography(
            test_network,
            "link_id",
            "dir",
            "distance",
            centroids=centroids,
            skim_fields=[],
            anode="A_NODE",
            bnode="B_NODE",
        )
        self.graph.set_graph(cost_field="distance")
        self.graph.set_blocked_centroid_flows(block_centroid_flows=True)
        self.graph.set_skimming("distance")

    def test_prepare_graph(self):
        self.test_create_from_geography()
        self.graph.prepare_graph(centroids)

        reference_graph = Graph()
        reference_graph.load_from_disk(test_graph)
        if not np.array_equal(self.graph.graph, reference_graph.graph):
            self.fail("Reference graph and newly-prepared graph are not equal")

    def test_set_graph(self):
        self.test_prepare_graph()
        self.graph.set_graph(cost_field="distance")
        self.graph.set_blocked_centroid_flows(block_centroid_flows=True)
        if self.graph.num_zones != centroids.shape[0]:
            self.fail("Number of centroids not properly set")
        if self.graph.num_links != 222:
            self.fail("Number of links not properly set")
        if self.graph.num_nodes != 93:
            self.fail("Number of nodes not properly set - " +
                      str(self.graph.num_nodes))

    def test_save_to_disk(self):
        self.test_create_from_geography()
        self.graph.save_to_disk(join(path_test, "aequilibrae_test_graph.aeg"))
        self.graph_id = self.graph.__id__
        self.graph_version = self.graph.__version__

    def test_load_from_disk(self):
        self.test_save_to_disk()
        reference_graph = Graph()
        reference_graph.load_from_disk(test_graph)

        new_graph = Graph()
        new_graph.load_from_disk(join(path_test, "aequilibrae_test_graph.aeg"))

        comparisons = [
            ("Graph", new_graph.graph, reference_graph.graph),
            ("b_nodes", new_graph.b_node, reference_graph.b_node),
            ("Forward-Star", new_graph.fs, reference_graph.fs),
            ("cost", new_graph.cost, reference_graph.cost),
            ("centroids", new_graph.centroids, reference_graph.centroids),
            ("skims", new_graph.skims, reference_graph.skims),
            ("link ids", new_graph.ids, reference_graph.ids),
            ("Network", new_graph.network, reference_graph.network),
            ("All Nodes", new_graph.all_nodes, reference_graph.all_nodes),
            ("Nodes to indices", new_graph.nodes_to_indices,
             reference_graph.nodes_to_indices),
        ]

        for comparison, newg, refg in comparisons:
            if not np.array_equal(newg, refg):
                self.fail(
                    "Reference %s and %s created and saved to disk are not equal"
                    % (comparison, comparison))

        comparisons = [
            ("nodes", new_graph.num_nodes, reference_graph.num_nodes),
            ("links", new_graph.num_links, reference_graph.num_links),
            ("zones", new_graph.num_zones, reference_graph.num_zones),
            ("block through centroids", new_graph.block_centroid_flows,
             reference_graph.block_centroid_flows),
            ("Graph ID", new_graph.__id__, self.graph_id),
            ("Graph Version", new_graph.__version__, self.graph_version),
        ]

        for comparison, newg, refg in comparisons:
            if newg != refg:
                self.fail(
                    "Reference %s and %s created and saved to disk are not equal"
                    % (comparison, comparison))

    def test_available_skims(self):
        self.test_set_graph()
        if self.graph.available_skims() != ["distance"]:
            self.fail("Skim availability with problems")

    def test_exclude_links(self):
        p = Project()
        p.load(siouxfalls_project)
        p.network.build_graphs()

        g = p.network.graphs['c']  # type: Graph

        # excludes a link before any setting or preparation
        g.exclude_links([12])

        g.set_graph('distance')
        r1 = PathResults()
        r1.prepare(g)
        r1.compute_path(1, 14)
        self.assertEqual(list(r1.path), [2, 6, 10, 34])

        # We exclude one link that we know was part of the last shortest path
        g.exclude_links([10])
        r2 = PathResults()
        r2.prepare(g)
        r2.compute_path(1, 14)
        self.assertEqual(list(r2.path), [2, 7, 36, 34])

        p.conn.close()
示例#7
0
class ImpedanceMatrixDialog(QtGui.QDialog, FORM_CLASS):
    def __init__(self, iface):
        QDialog.__init__(self)
        self.iface = iface
        self.setupUi(self)

        self.result = SkimResults()
        self.validtypes = integer_types + float_types
        self.tot_skims = 0
        self.name_skims = 0
        self.graph = None
        self.skimmeable_fields = []
        self.skim_fields = []
        self.error = None
        # FIRST, we connect slot signals

        # For loading a new graph
        self.load_graph_from_file.clicked.connect(
            self.loaded_new_graph_from_file)

        # For adding skims
        # self.bt_add_skim.clicked.connect(self.add_to_skim_list)
        self.but_adds_to_links.clicked.connect(self.append_to_list)
        self.but_removes_from_links.clicked.connect(self.removes_fields)

        self.do_dist_matrix.clicked.connect(self.run_skimming)

        # SECOND, we set visibility for sections that should not be shown when the form opens (overlapping items)
        #        and re-dimension the items that need re-dimensioning
        self.hide_all_progress_bars()
        self.available_skims_table.setColumnWidth(0, 245)
        self.skim_list.setColumnWidth(0, 245)
        self.available_skims_table.setEditTriggers(
            QtGui.QAbstractItemView.NoEditTriggers)
        self.skim_list.setEditTriggers(QtGui.QAbstractItemView.NoEditTriggers)

        # loads default path from parameters
        self.path = standard_path()

    def removes_fields(self):
        table = self.available_skims_table
        final_table = self.skim_list

        for i in final_table.selectedRanges():
            old_fields = [
                final_table.item(row, 0).text()
                for row in xrange(i.topRow(),
                                  i.bottomRow() + 1)
            ]

            for row in xrange(i.bottomRow(), i.topRow() - 1, -1):
                final_table.removeRow(row)

            counter = table.rowCount()
            for field in old_fields:
                table.setRowCount(counter + 1)
                item1 = QTableWidgetItem(field)
                item1.setFlags(Qt.ItemIsEnabled | Qt.ItemIsSelectable)
                table.setItem(counter, 0, item1)
                counter += 1

    def append_to_list(self):
        table = self.available_skims_table
        final_table = self.skim_list

        for i in table.selectedRanges():
            new_fields = [
                table.item(row, 0).text()
                for row in xrange(i.topRow(),
                                  i.bottomRow() + 1)
            ]

            for f in new_fields:
                self.skim_fields.append(f.encode('utf-8'))
            for row in xrange(i.bottomRow(), i.topRow() - 1, -1):
                table.removeRow(row)

            counter = final_table.rowCount()
            for field in new_fields:
                final_table.setRowCount(counter + 1)
                item1 = QTableWidgetItem(field)
                item1.setFlags(Qt.ItemIsEnabled | Qt.ItemIsSelectable)
                final_table.setItem(counter, 0, item1)
                counter += 1

    def hide_all_progress_bars(self):
        self.progressbar.setVisible(False)
        self.progress_label.setVisible(False)
        self.progressbar.setValue(0)
        self.progress_label.setText('')

    def loaded_new_graph_from_file(self):
        file_types = ["AequilibraE graph(*.aeg)"]

        new_name, file_type = GetOutputFileName(self, 'Graph file', file_types,
                                                ".aeg", self.path)
        self.cb_minimizing.clear()
        self.available_skims_table.clearContents()
        self.block_paths.setChecked(False)
        self.graph = None
        if new_name is not None:
            self.graph_file_name.setText(new_name)
            self.graph = Graph()
            self.graph.load_from_disk(new_name)

            self.block_paths.setChecked(self.graph.block_centroid_flows)
            graph_fields = list(self.graph.graph.dtype.names)
            self.skimmeable_fields = self.graph.available_skims()

            self.available_skims_table.setRowCount(len(self.skimmeable_fields))
            for q in self.skimmeable_fields:
                self.cb_minimizing.addItem(q)
                self.available_skims_table.setItem(0, 0, QTableWidgetItem(q))

    def browse_outfile(self):
        self.imped_results = None
        new_name, extension = GetOutputFileName(
            self, 'AequilibraE impedance computation', matrix_export_types,
            '.aem', self.path)
        if new_name is not None:
            self.imped_results = new_name.encode('utf-8')

    def run_thread(self):
        self.do_dist_matrix.setVisible(False)
        self.progressbar.setRange(0, self.graph.num_zones)
        QObject.connect(self.worker_thread, SIGNAL("skimming"),
                        self.signal_handler)
        self.worker_thread.start()
        self.exec_()

    def signal_handler(self, val):
        if val[0] == 'zones finalized':
            self.progressbar.setValue(val[1])
        elif val[0] == 'text skimming':
            self.progress_label.setText(val[1])
        elif val[0] == 'finished_threaded_procedure':
            self.finished_threaded_procedure()

    def finished_threaded_procedure(self):
        self.report = self.worker_thread.report
        self.result.skims.export(self.imped_results)
        self.exit_procedure()

    def run_skimming(self):  # Saving results

        if self.error is None:
            self.browse_outfile()
            cost_field = self.cb_minimizing.currentText().encode('utf-8')

            # We prepare the graph to set all nodes as centroids
            if self.rdo_all_nodes.isChecked():
                self.graph.prepare_graph(self.graph.all_nodes)

            self.graph.set_graph(
                cost_field=cost_field,
                skim_fields=self.skim_fields,
                block_centroid_flows=self.block_paths.isChecked())

            self.result.prepare(self.graph)

            self.funding1.setVisible(False)
            self.funding2.setVisible(False)
            self.progressbar.setVisible(True)
            self.progress_label.setVisible(True)
            self.worker_thread = NetworkSkimming(self.graph, self.result)
            try:
                self.run_thread()
            except ValueError as error:
                qgis.utils.iface.messageBar().pushMessage("Input error",
                                                          error.message,
                                                          level=3)
        else:
            qgis.utils.iface.messageBar().pushMessage("Error:",
                                                      self.error,
                                                      level=3)

    def check_inputs(self):
        self.error = None
        if self.rdo_all_nodes.isChecked() and self.block_paths.isChecked():
            self.error = 'It is not possible to trace paths between all nodes while blocking flows through centroids'

        if self.graph is None:
            self.error = 'No graph loaded'

        if len(self.skim_fields) < 1:
            self.error = 'No skim fields provided'

    def exit_procedure(self):
        self.close()
        if self.report:
            dlg2 = ReportDialog(self.iface, self.report)
            dlg2.show()
            dlg2.exec_()
示例#8
0
class DesireLinesProcedure(WorkerThread):
    def __init__(self, parentThread, layer: str, id_field: int, matrix: AequilibraeMatrix, matrix_hash: dict,
                 dl_type: str) -> None:
        WorkerThread.__init__(self, parentThread)
        self.layer = layer
        self.id_field = id_field
        self.matrix = matrix
        self.dl_type = dl_type
        self.error = None
        self.matrix_hash = matrix_hash
        self.report = []
        self.logger = logging.getLogger('aequilibrae')
        self.nodes_to_indices = {matrix.index[x]: x for x in range(matrix.zones)}
        self.python_version = (8 * struct.calcsize("P"))

        if error:
            self.error = 'Scipy and/or Numpy not installed'
            self.report.append(self.error)
        self.procedure = "ASSIGNMENT"

    def doWork(self):
        if self.error is None:
            # In case we have only one class
            unnasigned = 0
            classes = self.matrix.matrix_view.shape[2]

            layer = get_vector_layer_by_name(self.layer)
            idx = layer.dataProvider().fieldNameIndex(self.id_field)
            feature_count = layer.featureCount()
            self.desire_lines.emit(('job_size_dl', feature_count))

            all_centroids = {}
            for P, feat in enumerate(layer.getFeatures()):
                geom = feat.geometry()
                if geom is not None:
                    point = list(geom.centroid().asPoint())
                    centroid_id = feat.attributes()[idx]
                    all_centroids[centroid_id] = point
                self.desire_lines.emit(('jobs_done_dl', P))
                self.desire_lines.emit(('text_dl', "Loading Layer Features: " + str(P) + "/" + str(feature_count)))

            # Creating resulting layer
            EPSG_code = int(layer.crs().authid().split(":")[1])

            desireline_layer = QgsVectorLayer("LineString?crs=epsg:" + str(EPSG_code), self.dl_type, "memory")
            dlpr = desireline_layer.dataProvider()
            base_dl_fields = [QgsField("link_id", QVariant.Int),
                              QgsField("A_Node", QVariant.Int),
                              QgsField("B_Node", QVariant.Int),
                              QgsField("direct", QVariant.Int),
                              QgsField("distance", QVariant.Double)]

            if self.dl_type == "DesireLines":
                items = []
                for i, j in all_centroids.items():
                    items.append((i, j[0], j[1]))
                coords = np.array(items)

                coord_index = np.zeros((self.matrix.index[:].max().astype(np.int64) + 1, 2))
                coord_index[coords[:, 0].astype(np.int64), 0] = coords[:, 1]
                coord_index[coords[:, 0].astype(np.int64), 1] = coords[:, 2]

                self.desire_lines.emit(('text_dl', "Manipulating matrix indices"))
                zones = self.matrix.index[:].shape[0]
                a = np.array(self.matrix.index[:], np.int64)
                ij, ji = np.meshgrid(a, a, sparse=False, indexing='ij')
                ij = ij.flatten()
                ji = ji.flatten()

                arrays = [ij, ji]

                self.desire_lines.emit(('text_dl', "Collecting all matrices"))
                self.desire_lines.emit(('job_size_dl', len(self.matrix.view_names)))

                total_mat = np.zeros((zones, zones), np.float64)
                for i, mat in enumerate(self.matrix.view_names):
                    arrays.append(self.matrix.matrix[mat].flatten())
                    total_mat += self.matrix.matrix[mat]
                    self.desire_lines.emit(('jobs_done_dl', i + 1))

                # Eliminates the cells for which we don't have geography
                self.desire_lines.emit(('text_dl', "Filtering zones with no geography available"))
                zones_with_no_geography = [x for x in self.matrix.index[:] if x not in all_centroids]
                if zones_with_no_geography:
                    self.desire_lines.emit(('job_size_dl', len(zones_with_no_geography)))
                for k, z in enumerate(zones_with_no_geography):
                    i = self.matrix.matrix_hash[z]
                    t = np.nansum(total_mat[i, :]) + np.nansum(total_mat[:, i])
                    unnasigned += t
                    self.report.append(
                        'Zone {} does not have a corresponding centroid/zone. Total flow {}'.format(z, t))
                    total_mat[i, :] = 0
                    total_mat[:, i] = 0
                    self.desire_lines.emit(('jobs_done_dl', k + 1))

                self.desire_lines.emit(('text_dl', "Filtering down to OD pairs with flows"))
                field_names = [x for x in self.matrix.view_names]
                nonzero = np.nonzero(total_mat.flatten())
                arrays = np.vstack(arrays).transpose()
                arrays = arrays[nonzero, :]
                arrays = arrays.reshape(arrays.shape[1], arrays.shape[2])

                base_types = [(x, np.float64) for x in ['from', 'to']]
                base_types = base_types + [(x + '_AB', np.float64) for x in field_names]

                dtypes_ab = [(x, np.int64) for x in ['from', 'to']] + [(x + '_AB', float) for x in field_names]
                dtypes_ba = [(x, np.int64) for x in ['to', 'from']] + [(x + '_BA', float) for x in field_names]

                ab_mat = np.array(arrays[arrays[:, 0] > arrays[:, 1], :])
                ba_mat = np.array(arrays[arrays[:, 0] < arrays[:, 1], :])

                flows_ab = ab_mat.view(base_types)
                flows_ab = flows_ab.reshape(flows_ab.shape[:-1])
                flows_ab = flows_ab.astype(dtypes_ab)

                flows_ba = ba_mat.view(base_types)
                flows_ba = flows_ba.reshape(flows_ba.shape[:-1])
                flows_ba = flows_ba.astype(dtypes_ba)

                defaults1 = {x + '_AB': 0.0 for x in field_names}
                defaults = {x + '_BA': 0.0 for x in field_names}
                defaults = {**defaults, **defaults1}

                self.desire_lines.emit(('text_dl', "Concatenating AB & BA flows"))
                flows = rfn.join_by(['from', 'to'], flows_ab, flows_ba, jointype='outer', defaults=defaults,
                                    usemask=True, asrecarray=True)
                flows = flows.filled()
                flows_ab = 0
                flows_ba = 0

                for f in flows.dtype.names[2:]:
                    base_dl_fields.extend([QgsField(f, QVariant.Double)])

                dlpr.addAttributes(base_dl_fields)
                desireline_layer.updateFields()

                self.desire_lines.emit(('text_dl', "Creating Desire Lines"))
                self.desire_lines.emit(('job_size_dl', flows.shape[0]))
                all_features = []
                for i, rec in enumerate(flows):
                    a_node = rec[0]
                    b_node = rec[1]

                    a_point = QgsPointXY(*all_centroids[a_node])
                    b_point = QgsPointXY(*all_centroids[b_node])
                    dist = QgsGeometry().fromPointXY(a_point).distance(
                        QgsGeometry().fromPointXY(b_point))
                    feature = QgsFeature()
                    feature.setGeometry(QgsGeometry.fromPolylineXY([a_point, b_point]))

                    attrs = [i + 1, int(a_node), int(b_node), 0, dist]
                    attrs.extend([float(x) for x in list(rec)[2:]])
                    feature.setAttributes(attrs)
                    all_features.append(feature)
                    self.desire_lines.emit(('jobs_done_dl', i))
                if unnasigned > 0:
                    self.report.append('Total non assigned flows (not counting intrazonals):' + str(unnasigned))

                if flows.shape[0] > 1:
                    a = dlpr.addFeatures(all_features)
                    self.result_layer = desireline_layer
                else:
                    self.report.append('Nothing to show')

            elif self.dl_type == "DelaunayLines":

                for f in self.matrix.view_names:
                    base_dl_fields.extend([QgsField(f + '_ab', QVariant.Double),
                                           QgsField(f + '_ba', QVariant.Double),
                                           QgsField(f + '_tot', QVariant.Double)])

                dlpr.addAttributes(base_dl_fields)
                desireline_layer.updateFields()

                self.desire_lines.emit(('text_dl', "Building Delaunay dataset"))
                points = []
                node_id_in_delaunay_results = {}
                i = 0
                self.desire_lines.emit(('job_size_dl', len(all_centroids)))
                for k, v in all_centroids.items():
                    self.desire_lines.emit(('jobs_done_dl', i))
                    points.append(v)
                    node_id_in_delaunay_results[i] = k
                    i += 1

                self.desire_lines.emit(('text_dl', "Computing Delaunay Triangles"))
                tri = Delaunay(np.array(points))

                # We process all the triangles to only get each edge once
                self.desire_lines.emit(('text_dl', "Building Delaunay Network: Collecting Edges"))
                edges = []
                if self.python_version == 32:
                    all_edges = tri.vertices
                else:
                    all_edges = tri.simplices

                self.desire_lines.emit(('job_size_dl', len(all_edges)))

                for j, triangle in enumerate(all_edges):
                    self.desire_lines.emit(('jobs_done_dl', j))
                    links = list(itertools.combinations(triangle, 2))
                    for i in links:
                        edges.append([min(i[0], i[1]), max(i[0], i[1])])

                self.desire_lines.emit(('text_dl', "Building Delaunay Network: Getting unique edges"))
                edges = OrderedDict((str(x), x) for x in edges).values()

                # Writing Delaunay layer
                self.desire_lines.emit(('text_dl', "Building Delaunay Network: Assembling Layer"))

                desireline_link_id = 1
                data = []
                dl_ids_on_links = {}
                self.desire_lines.emit(('job_size_dl', len(edges)))
                for j, edge in enumerate(edges):
                    self.desire_lines.emit(('jobs_done_dl', j))
                    a_node = node_id_in_delaunay_results[edge[0]]
                    a_point = all_centroids[a_node]
                    a_point = QgsPointXY(a_point[0], a_point[1])
                    b_node = node_id_in_delaunay_results[edge[1]]
                    b_point = all_centroids[b_node]
                    b_point = QgsPointXY(b_point[0], b_point[1])
                    dist = QgsGeometry().fromPointXY(a_point).distance(QgsGeometry().fromPointXY(b_point))
                    line = []
                    line.append(desireline_link_id)
                    line.append(a_node)
                    line.append(b_node)
                    line.append(dist)
                    line.append(dist)
                    line.append(0)
                    data.append(line)
                    dl_ids_on_links[desireline_link_id] = [a_node, b_node, 0, dist]
                    desireline_link_id += 1

                self.desire_lines.emit(('text_dl', "Building graph"))
                network = np.asarray(data)
                del data

                # types for the network
                self.graph = Graph()
                itype = self.graph.default_types('int')
                ftype = self.graph.default_types('float')
                all_types = [itype, itype, itype, ftype, ftype, np.int8]
                all_titles = ['link_id', 'a_node', 'b_node', 'distance_ab', 'distance_ba', 'direction']
                dt = [(t, d) for t, d in zip(all_titles, all_types)]
                self.graph.network = np.zeros(network.shape[0], dtype=dt)

                for k, t in enumerate(dt):
                    self.graph.network[t[0]] = network[:, k].astype(t[1])
                del network

                self.graph.type_loaded = 'NETWORK'
                self.graph.status = 'OK'
                self.graph.network_ok = True
                self.graph.prepare_graph(self.matrix.index.astype(np.int64))
                self.graph.set_graph(cost_field='distance', skim_fields=False, block_centroid_flows=False)

                self.results = AssignmentResults()
                self.results.prepare(self.graph, self.matrix)
                self.desire_lines.emit(('text_dl', "Assigning demand"))
                self.desire_lines.emit(('job_size_dl', self.matrix.index.shape[0]))

                assigner = allOrNothing(self.matrix, self.graph, self.results)
                assigner.execute()
                self.report = assigner.report
                print(self.results.link_loads)
                self.desire_lines.emit(('text_dl', "Collecting results"))
                self.desire_lines.emit(('text_dl', "Building resulting layer"))
                features = []
                max_edges = len(edges)
                self.desire_lines.emit(('job_size_dl', max_edges))
                link_loads = self.results.save_to_disk()
                for i, link_id in enumerate(link_loads.index):
                    self.desire_lines.emit(('jobs_done_dl', i))
                    a_node, b_node, direct, dist = dl_ids_on_links[link_id]

                    attr = [int(link_id), a_node, b_node, direct, dist]

                    a_point = all_centroids[a_node]
                    a_point = QgsPointXY(a_point[0], a_point[1])
                    b_point = all_centroids[b_node]
                    b_point = QgsPointXY(b_point[0], b_point[1])

                    feature = QgsFeature()
                    feature.setGeometry(QgsGeometry.fromPolylineXY([a_point, b_point]))

                    for c in self.matrix.view_names:
                        attr.extend([float(link_loads.data[c + '_ab'][i]),
                                     float(link_loads.data[c + '_ba'][i]),
                                     float(link_loads.data[c + '_tot'][i])])
                    feature.setAttributes(attr)
                    features.append(feature)
                a = dlpr.addFeatures(features)
                self.result_layer = desireline_layer

        self.desire_lines.emit(('finished_desire_lines_procedure', 0))
示例#9
0
class TestGraph(TestCase):
    def test_create_from_geography(self):
        self.graph = Graph()
        self.graph.create_from_geography(test_network,
                                         'link_id',
                                         'dir',
                                         'distance',
                                         centroids=centroids,
                                         skim_fields=[],
                                         anode="A_NODE",
                                         bnode="B_NODE")
        self.graph.set_graph(cost_field='distance', block_centroid_flows=True)

    def test_load_network_from_csv(self):
        pass

    def test_prepare_graph(self):
        self.test_create_from_geography()
        self.graph.prepare_graph(centroids)

        reference_graph = Graph()
        reference_graph.load_from_disk(test_graph)
        if not np.array_equal(self.graph.graph, reference_graph.graph):
            self.fail('Reference graph and newly-prepared graph are not equal')

    def test_set_graph(self):
        self.test_prepare_graph()
        self.graph.set_graph(cost_field='distance', block_centroid_flows=True)
        if self.graph.num_zones != centroids.shape[0]:
            self.fail('Number of centroids not properly set')
        if self.graph.num_links != 222:
            self.fail('Number of links not properly set')
        if self.graph.num_nodes != 93:
            self.fail('Number of nodes not properly set - ' +
                      str(self.graph.num_nodes))

    def test_save_to_disk(self):
        self.test_create_from_geography()
        self.graph.save_to_disk(join(path_test, 'aequilibrae_test_graph.aeg'))
        self.graph_id = self.graph.__id__
        self.graph_version = self.graph.__version__

    def test_load_from_disk(self):
        self.test_save_to_disk()
        reference_graph = Graph()
        reference_graph.load_from_disk(test_graph)

        new_graph = Graph()
        new_graph.load_from_disk(join(path_test, 'aequilibrae_test_graph.aeg'))

        comparisons = [
            ('Graph', new_graph.graph, reference_graph.graph),
            ('b_nodes', new_graph.b_node, reference_graph.b_node),
            ('Forward-Star', new_graph.fs, reference_graph.fs),
            ('cost', new_graph.cost, reference_graph.cost),
            ('centroids', new_graph.centroids, reference_graph.centroids),
            ('skims', new_graph.skims, reference_graph.skims),
            ('link ids', new_graph.ids, reference_graph.ids),
            ('Network', new_graph.network, reference_graph.network),
            ('All Nodes', new_graph.all_nodes, reference_graph.all_nodes),
            ('Nodes to indices', new_graph.nodes_to_indices,
             reference_graph.nodes_to_indices)
        ]

        for comparison, newg, refg in comparisons:
            if not np.array_equal(newg, refg):
                self.fail(
                    'Reference %s and %s created and saved to disk are not equal'
                    % (comparison, comparison))

        comparisons = [
            ('nodes', new_graph.num_nodes, reference_graph.num_nodes),
            ('links', new_graph.num_links, reference_graph.num_links),
            ('zones', new_graph.num_zones, reference_graph.num_zones),
            ('block through centroids', new_graph.block_centroid_flows,
             reference_graph.block_centroid_flows),
            ('Graph ID', new_graph.__id__, self.graph_id),
            ('Graph Version', new_graph.__version__, self.graph_version)
        ]

        for comparison, newg, refg in comparisons:
            if newg != refg:
                self.fail(
                    'Reference %s and %s created and saved to disk are not equal'
                    % (comparison, comparison))

    def test_reset_single_fields(self):
        pass

    def test_add_single_field(self):
        pass

    def test_available_skims(self):
        self.test_set_graph()
        if self.graph.available_skims() != ['distance']:
            self.fail('Skim availability with problems')
示例#10
0
class TestGraph(TestCase):
    def test_create_from_geography(self):
        self.graph = Graph()
        self.graph.create_from_geography(
            test_network,
            "link_id",
            "dir",
            "distance",
            centroids=centroids,
            skim_fields=[],
            anode="A_NODE",
            bnode="B_NODE",
        )
        self.graph.set_graph(cost_field="distance", block_centroid_flows=True)

    def test_load_network_from_csv(self):
        pass

    def test_prepare_graph(self):
        self.test_create_from_geography()
        self.graph.prepare_graph(centroids)

        reference_graph = Graph()
        reference_graph.load_from_disk(test_graph)
        if not np.array_equal(self.graph.graph, reference_graph.graph):
            self.fail("Reference graph and newly-prepared graph are not equal")

    def test_set_graph(self):
        self.test_prepare_graph()
        self.graph.set_graph(cost_field="distance", block_centroid_flows=True)
        if self.graph.num_zones != centroids.shape[0]:
            self.fail("Number of centroids not properly set")
        if self.graph.num_links != 222:
            self.fail("Number of links not properly set")
        if self.graph.num_nodes != 93:
            self.fail("Number of nodes not properly set - " + str(self.graph.num_nodes))

    def test_save_to_disk(self):
        self.test_create_from_geography()
        self.graph.save_to_disk(join(path_test, "aequilibrae_test_graph.aeg"))
        self.graph_id = self.graph.__id__
        self.graph_version = self.graph.__version__

    def test_load_from_disk(self):
        self.test_save_to_disk()
        reference_graph = Graph()
        reference_graph.load_from_disk(test_graph)

        new_graph = Graph()
        new_graph.load_from_disk(join(path_test, "aequilibrae_test_graph.aeg"))

        comparisons = [
            ("Graph", new_graph.graph, reference_graph.graph),
            ("b_nodes", new_graph.b_node, reference_graph.b_node),
            ("Forward-Star", new_graph.fs, reference_graph.fs),
            ("cost", new_graph.cost, reference_graph.cost),
            ("centroids", new_graph.centroids, reference_graph.centroids),
            ("skims", new_graph.skims, reference_graph.skims),
            ("link ids", new_graph.ids, reference_graph.ids),
            ("Network", new_graph.network, reference_graph.network),
            ("All Nodes", new_graph.all_nodes, reference_graph.all_nodes),
            (
                "Nodes to indices",
                new_graph.nodes_to_indices,
                reference_graph.nodes_to_indices,
            ),
        ]

        for comparison, newg, refg in comparisons:
            if not np.array_equal(newg, refg):
                self.fail(
                    "Reference %s and %s created and saved to disk are not equal"
                    % (comparison, comparison)
                )

        comparisons = [
            ("nodes", new_graph.num_nodes, reference_graph.num_nodes),
            ("links", new_graph.num_links, reference_graph.num_links),
            ("zones", new_graph.num_zones, reference_graph.num_zones),
            (
                "block through centroids",
                new_graph.block_centroid_flows,
                reference_graph.block_centroid_flows,
            ),
            ("Graph ID", new_graph.__id__, self.graph_id),
            ("Graph Version", new_graph.__version__, self.graph_version),
        ]

        for comparison, newg, refg in comparisons:
            if newg != refg:
                self.fail(
                    "Reference %s and %s created and saved to disk are not equal"
                    % (comparison, comparison)
                )

    def test_reset_single_fields(self):
        pass

    def test_add_single_field(self):
        pass

    def test_available_skims(self):
        self.test_set_graph()
        if self.graph.available_skims() != ["distance"]:
            self.fail("Skim availability with problems")
示例#11
0
    def build_graphs(self, fields: list = None, modes: list = None) -> None:
        """Builds graphs for all modes currently available in the model

        When called, it overwrites all graphs previously created and stored in the networks'
        dictionary of graphs

        Args:
            *fields* (:obj:`list`, optional): When working with very large graphs with large number of fields in the
                                              database, it may be useful to specify which fields to use
            *modes* (:obj:`list`, optional): When working with very large graphs with large number of fields in the
                                              database, it may be useful to generate only those we need

        To use the *fields* parameter, a minimalistic option is the following
        ::

            p = Project()
            p.open(nm)
            fields = ['distance']
            p.network.build_graphs(fields, modes = ['c', 'w'])

        """
        curr = self.conn.cursor()

        if fields is None:
            curr.execute("PRAGMA table_info(links);")
            field_names = curr.fetchall()

            ignore_fields = ["ogc_fid", "geometry"]
            all_fields = [
                f[1] for f in field_names if f[1] not in ignore_fields
            ]
        else:
            fields.extend(
                ["link_id", "a_node", "b_node", "direction", "modes"])
            all_fields = list(set(fields))

        if modes is None:
            modes = curr.execute("select mode_id from modes;").fetchall()
            modes = [m[0] for m in modes]
        elif isinstance(modes, str):
            modes = [modes]

        sql = f"select {','.join(all_fields)} from links"

        df = pd.read_sql(sql, self.conn).fillna(value=np.nan)
        valid_fields = list(df.select_dtypes(np.number).columns) + ["modes"]
        curr.execute(
            "select node_id from nodes where is_centroid=1 order by node_id;")
        centroids = np.array([i[0] for i in curr.fetchall()], np.uint32)

        data = df[valid_fields]
        for m in modes:
            net = pd.DataFrame(data, copy=True)
            net.loc[~net.modes.str.contains(m),
                    "b_node"] = net.loc[~net.modes.str.contains(m), "a_node"]
            g = Graph()
            g.mode = m
            g.network = net
            g.prepare_graph(centroids)
            g.set_blocked_centroid_flows(True)
            self.graphs[m] = g
示例#12
0
class DesireLinesProcedure(WorkerThread):
    def __init__(self, parentThread, layer, id_field, matrix, dl_type):
        WorkerThread.__init__(self, parentThread)
        self.layer = layer
        self.id_field = id_field
        self.matrix = matrix
        self.dl_type = dl_type
        self.error = None
        if error:
            self.error = 'Scipy and/or Numpy not installed'
        self.procedure = "ASSIGNMENT"

    def doWork(self):
        if self.error is None:
            layer = get_vector_layer_by_name(self.layer)
            idx = layer.fieldNameIndex(self.id_field)
            matrix = self.matrix

            featcount = layer.featureCount()
            self.emit(SIGNAL("ProgressMaxValue(PyQt_PyObject)"),
                      (0, featcount))

            P = 0
            points = []
            point_ids = []
            for feat in layer.getFeatures():
                P += 1
                self.emit(SIGNAL("ProgressValue(PyQt_PyObject)"), (0, int(P)))
                self.emit(SIGNAL("ProgressText (PyQt_PyObject)"),
                          (0, "Loading Layer Features: " + str(P) + "/" +
                           str(featcount)))

                geom = feat.geometry()
                if geom is not None:
                    point = list(geom.centroid().asPoint())
                    points.append(point)
                    point_ids.append(feat.attributes()[idx])

            points = np.array(points)
            self.emit(SIGNAL("ProgressValue(PyQt_PyObject)"), (0, featcount))

            self.emit(
                SIGNAL("ProgressText (PyQt_PyObject)"),
                (0, "Preparing consistency check Matrix Vs. Zoning layer"))

            vector1 = np.nonzero(np.sum(matrix, axis=0))[0]
            vector2 = np.nonzero(np.sum(matrix, axis=1))[0]
            nonzero = np.hstack((vector1, vector2))

            self.emit(SIGNAL("ProgressValue(PyQt_PyObject)"),
                      (0, nonzero.shape[0]))
            for i, zone in enumerate(nonzero):
                if zone not in point_ids:
                    self.error = 'Zone ' + str(
                        zone) + ' with positive flow not in zoning file'
                    break
                self.emit(SIGNAL("ProgressMaxValue(PyQt_PyObject)"),
                          (0, i + 1))
            self.emit(SIGNAL("ProgressValue(PyQt_PyObject)"),
                      (0, nonzero.shape[0]))

        if self.error is None:

            #Creating resulting layer
            EPSG_code = int(layer.crs().authid().split(":")[1])

            desireline_layer = QgsVectorLayer(
                "LineString?crs=epsg:" + str(EPSG_code), self.dl_type,
                "memory")
            dlpr = desireline_layer.dataProvider()
            dlpr.addAttributes([
                QgsField("link_id", QVariant.Int),
                QgsField("A_Node", QVariant.Int),
                QgsField("B_Node", QVariant.Int),
                QgsField("direct", QVariant.Int),
                QgsField("length", QVariant.Double),
                QgsField("AB_FLOW", QVariant.Double),
                QgsField("BA_FLOW", QVariant.Double),
                QgsField("TOT_FLOW", QVariant.Double)
            ])
            desireline_layer.updateFields()

            if self.dl_type == "DesireLines":
                self.emit(SIGNAL("ProgressText (PyQt_PyObject)"),
                          (0, "Creating Desire Lines"))
                self.emit(SIGNAL("ProgressMaxValue(PyQt_PyObject)"),
                          (0, self.matrix.shape[0] * self.matrix.shape[1] / 2))

                #We create the dictionary with point information
                all_points = {}
                point_ids = np.array(point_ids).astype(np.int)
                for i in range(point_ids.shape[0]):
                    all_points[point_ids[i]] = points[i]

                # We are assuming that the matrix is square here. Maybe we could add more general code layer
                desireline_link_id = 1
                q = 0
                all_features = []
                for i in range(self.matrix.shape[0]):
                    for j in xrange(i + 1, self.matrix.shape[1]):
                        q += 1
                        self.emit(SIGNAL("ProgressValue(PyQt_PyObject)"),
                                  (0, q))
                        if self.matrix[i, j] + self.matrix[j, i] > 0:
                            a_node = i
                            a_point = QgsPoint(all_points[a_node][0],
                                               all_points[a_node][1])
                            b_node = j
                            b_point = QgsPoint(all_points[b_node][0],
                                               all_points[b_node][1])
                            dist = QgsGeometry().fromPoint(a_point).distance(
                                QgsGeometry().fromPoint(b_point))
                            feature = QgsFeature()
                            feature.setGeometry(
                                QgsGeometry.fromPolyline([a_point, b_point]))
                            feature.setAttributes([
                                desireline_link_id, a_node, b_node, 0, dist,
                                float(self.matrix[i, j]),
                                float(self.matrix[j, i]),
                                float(self.matrix[i, j] + self.matrix[j, i])
                            ])
                            all_features.append(feature)

                            desireline_link_id += 1
                a = dlpr.addFeatures(all_features)
                self.result_layer = desireline_layer

            elif self.dl_type == "DelaunayLines":
                self.emit(SIGNAL("ProgressText (PyQt_PyObject)"),
                          (0, "Computing Delaunay Triangles"))
                tri = Delaunay(points)

                #We process all the triangles to only get each edge once
                self.emit(SIGNAL("ProgressText (PyQt_PyObject)"),
                          (0, "Building Delaunay Network: Collecting Edges"))
                edges = []
                for triangle in tri.simplices:
                    links = list(itertools.combinations(triangle, 2))

                    for i in links:
                        l = [min(i[0], i[1]), max(i[0], i[1])]
                        if l not in edges:
                            edges.append(l)

                #Writing Delaunay layer
                self.emit(SIGNAL("ProgressText (PyQt_PyObject)"),
                          (0, "Building Delaunay Network: Assembling Layer"))
                desireline_link_id = 1
                data = []
                for edge in edges:
                    a_node = edge[0]
                    a_point = QgsPoint(points[a_node][0], points[a_node][1])
                    b_node = edge[1]
                    b_point = QgsPoint(points[b_node][0], points[b_node][1])
                    dist = QgsGeometry().fromPoint(a_point).distance(
                        QgsGeometry().fromPoint(b_point))
                    line = []
                    line.append(desireline_link_id)
                    line.append(point_ids[a_node])
                    line.append(point_ids[b_node])
                    line.append(dist)
                    line.append(dist)
                    line.append(0)
                    data.append(line)
                    desireline_link_id += 1

                self.emit(SIGNAL("ProgressText (PyQt_PyObject)"),
                          (0, "Building graph"))
                network = np.asarray(data)
                del data

                #types for the network
                all_types = [
                    np.int64, np.int64, np.int64, np.float64, np.float64,
                    np.int64
                ]
                all_titles = [
                    'link_id', 'a_node', 'b_node', 'length_ab', 'length_ba',
                    'direction'
                ]
                dt = [(t, d) for t, d in zip(all_titles, all_types)]

                self.graph = Graph()
                self.graph.network = np.zeros(network.shape[0], dtype=dt)

                for k, t in enumerate(dt):
                    self.graph.network[t[0]] = network[:, k].astype(t[1])
                del network

                # Here we transform the network to go from node 1 to N
                max_node = max(np.max(self.graph.network['a_node']),
                               np.max(self.graph.network['b_node']))
                max_node = max(max_node, self.matrix.shape[0],
                               self.matrix.shape[1]) + 1
                self.hash = np.zeros(max_node, np.int)

                # Checks if any zone from the matrix is not present in the areas/node layer
                t1 = np.sum(self.matrix, axis=0)
                t2 = np.sum(self.matrix, axis=1)

                if t1.shape[0] > t2.shape[0]:
                    t2.resize(t1.shape)
                elif t2.shape[0] > t1.shape[0]:
                    t1.resize(t2.shape)
                totals = t1 + t2

                all_nodes = np.bincount(self.graph.network['a_node'])
                for i in range(totals.shape[0]):
                    if totals[i]:
                        if not all_nodes[i]:
                            qgis.utils.iface.messageBar().pushMessage(
                                "Matrix has demand for zones that do not exist "
                                "in the zones/nodes provided. Demand for those"
                                "ones were ignored. e.g. " + str(i),
                                '',
                                level=3)
                            break

                h = 1
                for i in range(self.graph.network.shape[0]):
                    a_node = self.graph.network['a_node'][i]
                    if self.hash[a_node] == 0:
                        self.hash[a_node] = h
                        h += 1

                    b_node = self.graph.network['b_node'][i]
                    if self.hash[b_node] == 0:
                        self.hash[b_node] = h
                        h += 1

                    self.graph.network['a_node'][i] = self.hash[a_node]
                    self.graph.network['b_node'][i] = self.hash[b_node]
                # End of network transformation

                #Now we transform the matrix appropriately
                self.matrix = reblocks_matrix(self.matrix, self.hash, h)

                self.graph.type_loaded = 'NETWORK'
                self.graph.status = 'OK'
                self.graph.network_ok = True
                self.graph.prepare_graph()

                self.graph.set_graph(h - 1,
                                     cost_field='length',
                                     block_centroid_flows=False)
                self.results = AssignmentResults()
                self.results.prepare(self.graph)
                self.results.set_cores(1)

                # Do the assignment
                all_or_nothing(self.matrix, self.graph, self.results)

                f = self.results.link_loads[:, 0]
                link_loads = np.zeros((f.shape[0] + 1, 2))
                for i in range(f.shape[0] - 1):
                    direction = self.graph.graph['direction'][i]
                    link_id = self.graph.graph['link_id'][i]
                    flow = f[i]
                    if direction == 1:
                        link_loads[link_id, 0] = flow
                    else:
                        link_loads[link_id, 1] = flow

                desireline_link_id = 1
                for edge in edges:
                    a_node = edge[0]
                    a_point = QgsPoint(points[a_node][0], points[a_node][1])
                    b_node = edge[1]
                    b_point = QgsPoint(points[b_node][0], points[b_node][1])
                    dist = QgsGeometry().fromPoint(a_point).distance(
                        QgsGeometry().fromPoint(b_point))
                    feature = QgsFeature()
                    feature.setGeometry(
                        QgsGeometry.fromPolyline([a_point, b_point]))
                    feature.setAttributes([
                        desireline_link_id, point_ids[a_node],
                        point_ids[b_node], 0, dist,
                        float(link_loads[desireline_link_id, 0]),
                        float(link_loads[desireline_link_id, 1]),
                        float(link_loads[desireline_link_id, 0] +
                              link_loads[desireline_link_id, 1])
                    ])
                    a = dlpr.addFeatures([feature])
                    desireline_link_id += 1
                self.result_layer = desireline_layer

        self.emit(SIGNAL("finished_threaded_procedure( PyQt_PyObject )"), True)
class DesireLinesProcedure(WorkerThread):
    def __init__(self, parentThread, layer, id_field, matrix, matrix_hash, dl_type):
        WorkerThread.__init__(self, parentThread)
        self.layer = layer
        self.id_field = id_field
        self.matrix = matrix
        self.dl_type = dl_type
        self.error = None
        self.matrix_hash = matrix_hash
        self.report = []
        self.nodes_to_indices = {matrix.index[x]: x for x in range(matrix.zones)}
        self.python_version = (8 * struct.calcsize("P"))

        if error:
            self.error = 'Scipy and/or Numpy not installed'
            self.report.append(self.error)
        self.procedure = "ASSIGNMENT"

    def doWork(self):
        if self.error is None:
            # In case we have only one class

            unnasigned = 0
            classes = self.matrix.matrix_view.shape[2]

            layer = get_vector_layer_by_name(self.layer)
            idx = layer.fieldNameIndex(self.id_field)
            feature_count = layer.featureCount()
            self.emit(SIGNAL("desire_lines"), ('job_size_dl', feature_count))

            all_centroids = {}
            P = 0
            for feat in layer.getFeatures():
                P += 1
                self.emit(SIGNAL("desire_lines"), ('jobs_done_dl', P))
                self.emit(SIGNAL("desire_lines"), ('text_dl',"Loading Layer Features: " + str(P) + "/" + str(feature_count)))
                geom = feat.geometry()
                if geom is not None:
                    point = list(geom.centroid().asPoint())
                    centroid_id = feat.attributes()[idx]
                    all_centroids[centroid_id] = point

            #Creating resulting layer
            EPSG_code = int(layer.crs().authid().split(":")[1])

            desireline_layer = QgsVectorLayer("LineString?crs=epsg:" + str(EPSG_code), self.dl_type, "memory")
            dlpr = desireline_layer.dataProvider()
            fields = [QgsField("link_id", QVariant.Int),
                              QgsField("A_Node", QVariant.Int),
                              QgsField("B_Node", QVariant.Int),
                              QgsField("direct", QVariant.Int),
                              QgsField("distance",  QVariant.Double)]
            for f in self.matrix.view_names:
                fields.extend([QgsField(f + '_ab',  QVariant.Double),
                              QgsField(f + '_ba',  QVariant.Double),
                              QgsField(f + '_tot',  QVariant.Double)])

            dlpr.addAttributes(fields)
            desireline_layer.updateFields()

            if self.dl_type == "DesireLines":
                self.emit(SIGNAL("desire_lines"), ('text_dl',"Creating Desire Lines"))
                self.emit(SIGNAL("desire_lines"), ('job_size_dl', self.matrix.zones ** 2 / 2))

                desireline_link_id = 1
                q = 0
                all_features = []
                for i in range(self.matrix.zones):
                    a_node = self.matrix.index[i]
                    if a_node in all_centroids.keys():
                        if np.sum(self.matrix.matrix_view[i, :, :]) + np.sum(self.matrix.matrix_view[:, i, :]) > 0:
                            columns_with_filled_cells = np.nonzero(np.sum(self.matrix.matrix_view[i, :, :], axis=1))
                            for j in columns_with_filled_cells[0]:
                                if np.sum(self.matrix.matrix_view[i, j, :]) + np.sum(self.matrix.matrix_view[j, i, :]) > 0:
                                    b_node = self.matrix.index[j]
                                    if a_node in all_centroids.keys() and b_node in all_centroids.keys():
                                        a_point = all_centroids[a_node]
                                        a_point = QgsPoint(a_point[0], a_point[1])
                                        b_point = all_centroids[b_node]
                                        b_point = QgsPoint(b_point[0], b_point[1])
                                        dist = QgsGeometry().fromPoint(a_point).distance(QgsGeometry().fromPoint(b_point))
                                        feature = QgsFeature()
                                        feature.setGeometry(QgsGeometry.fromPolyline([a_point, b_point]))
                                        attrs = [desireline_link_id, int(a_node), int(b_node), 0, dist]
                                        for c in range(classes):
                                            attrs.extend([float(self.matrix.matrix_view[i, j, c]),
                                                          float(self.matrix.matrix_view[j, i, c]),
                                                           float(self.matrix.matrix_view[i, j, c]) +
                                                          float(self.matrix.matrix_view[j, i, c])])

                                        feature.setAttributes(attrs)
                                        all_features.append(feature)
                                        desireline_link_id += 1
                                    else:
                                        tu = (a_node, b_node, np.sum(self.matrix.matrix_view[i, j, :]),
                                              np.sum(self.matrix.matrix_view[j, i, :]))
                                        self.report.append('No centroids available to depict flow between node {0} and node'
                                                           '{1}. Total AB flow was equal to {2} and total BA flow was '
                                                           'equal to {3}'.format(*tu))
                                        unnasigned += np.sum(self.matrix.matrix_view[i, j, :]) + \
                                                      np.sum(self.matrix.matrix_view[j, i, :])
                    else:
                        tu = (a_node, np.sum(self.matrix.matrix_view[i, :, :]))
                        self.report.append('No centroids available to depict flows from node {0} to all the others.'
                                           'Total flow from this zone is equal to {1}'.format(*tu))
                        unnasigned += np.sum(self.matrix.matrix_view[i, :, :])


                    q += self.matrix.zones
                    self.emit(SIGNAL("desire_lines"), ('jobs_done_dl', q))
                if unnasigned > 0:
                    self.report.append('Total non assigned flows (not counting intrazonals):' + str(unnasigned))

                if desireline_link_id > 1:
                    a = dlpr.addFeatures(all_features)
                    self.result_layer = desireline_layer
                else:
                    self.report.append('Nothing to show')

            elif self.dl_type == "DelaunayLines":

                self.emit(SIGNAL("desire_lines"), ('text_dl', "Building Delaunay dataset"))
                points = []
                node_id_in_delaunay_results = {}
                i = 0
                self.emit(SIGNAL("desire_lines"), ('job_size_dl', len(all_centroids)))
                for k, v in all_centroids.iteritems():
                    self.emit(SIGNAL("desire_lines"), ('jobs_done_dl', i))
                    points.append(v)
                    node_id_in_delaunay_results[i] = k
                    i += 1

                self.emit(SIGNAL("desire_lines"), ('text_dl', "Computing Delaunay Triangles"))
                tri = Delaunay(np.array(points))

                # We process all the triangles to only get each edge once
                self.emit(SIGNAL("desire_lines"), ('text_dl', "Building Delaunay Network: Collecting Edges"))
                edges = []
                if self.python_version == 32:
                    all_edges = tri.vertices
                else:
                    all_edges = tri.simplices

                self.emit(SIGNAL("desire_lines"), ('job_size_dl', len(all_edges)))
                for j, triangle in enumerate(all_edges):
                    self.emit(SIGNAL("desire_lines"), ('jobs_done_dl', j))
                    links = list(itertools.combinations(triangle, 2))
                    for i in links:
                        edges.append([min(i[0],i[1]), max(i[0],i[1])])

                self.emit(SIGNAL("desire_lines"), ('text_dl', "Building Delaunay Network: Getting unique edges"))
                edges = OrderedDict((str(x), x) for x in edges).values()

                # Writing Delaunay layer
                self.emit(SIGNAL("desire_lines"), ('text_dl', "Building Delaunay Network: Assembling Layer"))

                desireline_link_id = 1
                data = []
                dl_ids_on_links = {}
                self.emit(SIGNAL("desire_lines"), ('job_size_dl', len(edges)))
                for j, edge in enumerate(edges):
                    self.emit(SIGNAL("desire_lines"), ('jobs_done_dl', j))
                    a_node = node_id_in_delaunay_results[edge[0]]
                    a_point = all_centroids[a_node]
                    a_point = QgsPoint(a_point[0], a_point[1])
                    b_node = node_id_in_delaunay_results[edge[1]]
                    b_point = all_centroids[b_node]
                    b_point = QgsPoint(b_point[0], b_point[1])
                    dist = QgsGeometry().fromPoint(a_point).distance(QgsGeometry().fromPoint(b_point))
                    line = []
                    line.append(desireline_link_id)
                    line.append(a_node)
                    line.append(b_node)
                    line.append(dist)
                    line.append(dist)
                    line.append(0)
                    data.append(line)
                    dl_ids_on_links[desireline_link_id] = [a_node, b_node, 0, dist]
                    desireline_link_id += 1

                self.emit(SIGNAL("desire_lines"), ('text_dl', "Building graph"))
                network = np.asarray(data)
                del data

                #types for the network
                self.graph = Graph()
                itype = self.graph.default_types('int')
                ftype = self.graph.default_types('float')
                all_types = [itype, itype, itype, ftype, ftype, np.int8]
                all_titles = ['link_id', 'a_node', 'b_node', 'distance_ab', 'distance_ba', 'direction']
                dt = [(t, d) for t, d in zip(all_titles, all_types)]
                self.graph.network = np.zeros(network.shape[0], dtype=dt)

                for k, t in enumerate(dt):
                    self.graph.network[t[0]] = network[:, k].astype(t[1])
                del network

                self.graph.type_loaded = 'NETWORK'
                self.graph.status = 'OK'
                self.graph.network_ok = True
                try:
                    self.graph.prepare_graph(self.matrix.index.astype(np.int64))
                    self.graph.set_graph(cost_field='distance', skim_fields=False, block_centroid_flows=False)

                    self.results = AssignmentResults()
                    self.results.prepare(self.graph, self.matrix)
                    self.emit(SIGNAL("desire_lines"), ('text_dl', "Assigning demand"))
                    self.emit(SIGNAL("desire_lines"), ('job_size_dl', self.matrix.index.shape[0]))

                    assigner = allOrNothing(self.matrix, self.graph, self.results)
                    assigner.execute()
                    self.report = assigner.report
                    self.emit(SIGNAL("desire_lines"), ('text_dl', "Collecting results"))
                    link_loads = self.results.save_to_disk()
                    self.emit(SIGNAL("desire_lines"), ('text_dl', "Building resulting layer"))
                    features = []
                    max_edges = len(edges)
                    self.emit(SIGNAL("desire_lines"), ('job_size_dl', max_edges))

                    for i, link_id in enumerate(link_loads.index):
                        self.emit(SIGNAL("desire_lines"), ('jobs_done_dl', i))
                        a_node, b_node, direct, dist = dl_ids_on_links[link_id]

                        attr = [int(link_id), a_node, b_node, direct, dist]

                        a_point = all_centroids[a_node]
                        a_point = QgsPoint(a_point[0], a_point[1])
                        b_point = all_centroids[b_node]
                        b_point = QgsPoint(b_point[0], b_point[1])

                        feature = QgsFeature()
                        feature.setGeometry(QgsGeometry.fromPolyline([a_point, b_point]))

                        for c in self.matrix.view_names:
                            attr.extend([float(link_loads.data[c + '_ab'][i]),
                                         float(link_loads.data[c + '_ba'][i]),
                                         float(link_loads.data[c + '_tot'][i])])
                        feature.setAttributes(attr)
                        features.append(feature)
                    a = dlpr.addFeatures(features)
                    self.result_layer = desireline_layer
                except ValueError as error:
                    self.report = [error.message]

        self.emit(SIGNAL("desire_lines"), ('finished_desire_lines_procedure', 0))
class DesireLinesProcedure(WorkerThread):
    def __init__(self, parentThread, layer, id_field, matrix, matrix_hash,
                 dl_type):
        WorkerThread.__init__(self, parentThread)
        self.layer = layer
        self.id_field = id_field
        self.matrix = matrix
        self.dl_type = dl_type
        self.error = None
        self.matrix_hash = matrix_hash
        self.report = []
        self.python_version = (8 * struct.calcsize("P"))

        if error:
            self.error = 'Scipy and/or Numpy not installed'
        self.procedure = "ASSIGNMENT"

    def doWork(self):
        if self.error is None:
            layer = get_vector_layer_by_name(self.layer)
            idx = layer.fieldNameIndex(self.id_field)
            matrix = self.matrix

            matrix_nodes = max(self.matrix_hash.values()) + 1
            featcount = layer.featureCount()
            self.emit(SIGNAL("ProgressMaxValue(PyQt_PyObject)"),
                      (0, featcount))

            all_centroids = {}
            P = 0
            for feat in layer.getFeatures():
                P += 1
                self.emit(SIGNAL("ProgressValue(PyQt_PyObject)"), (0, int(P)))
                self.emit(SIGNAL("ProgressText (PyQt_PyObject)"),
                          (0, "Loading Layer Features: " + str(P) + "/" +
                           str(featcount)))

                geom = feat.geometry()
                if geom is not None:
                    point = list(geom.centroid().asPoint())
                    centroid_id = feat.attributes()[idx]
                    all_centroids[centroid_id] = point

                    if centroid_id not in self.matrix_hash.keys():
                        self.matrix_hash[centroid_id] = matrix_nodes
                        matrix_nodes += 1
            reverse_hash = {v: k for k, v in self.matrix_hash.iteritems()}

            #Creating resulting layer
            EPSG_code = int(layer.crs().authid().split(":")[1])

            desireline_layer = QgsVectorLayer(
                "LineString?crs=epsg:" + str(EPSG_code), self.dl_type,
                "memory")
            dlpr = desireline_layer.dataProvider()
            dlpr.addAttributes([
                QgsField("link_id", QVariant.Int),
                QgsField("A_Node", QVariant.Int),
                QgsField("B_Node", QVariant.Int),
                QgsField("direct", QVariant.Int),
                QgsField("length", QVariant.Double),
                QgsField("ab_flow", QVariant.Double),
                QgsField("ba_flow", QVariant.Double),
                QgsField("tot_flow", QVariant.Double)
            ])
            desireline_layer.updateFields()

            if self.dl_type == "DesireLines":
                self.emit(SIGNAL("ProgressText (PyQt_PyObject)"),
                          (0, "Creating Desire Lines"))
                self.emit(SIGNAL("ProgressMaxValue(PyQt_PyObject)"),
                          (0, self.matrix.shape[0] * self.matrix.shape[1] / 2))

                desireline_link_id = 1
                q = 0
                all_features = []
                for i in range(self.matrix.shape[0]):
                    if np.sum(self.matrix[i, :]) > 0:
                        a_node = reverse_hash[i]
                        for j in xrange(i + 1, self.matrix.shape[1]):
                            q += 1
                            b_node = reverse_hash[j]
                            self.emit(SIGNAL("ProgressValue(PyQt_PyObject)"),
                                      (0, q))
                            if self.matrix[i, j] + self.matrix[j, i] > 0:
                                if a_node in all_centroids.keys(
                                ) and b_node in all_centroids.keys():
                                    a_point = all_centroids[a_node]
                                    a_point = QgsPoint(a_point[0], a_point[1])
                                    b_point = all_centroids[b_node]
                                    b_point = QgsPoint(b_point[0], b_point[1])
                                    dist = QgsGeometry().fromPoint(
                                        a_point).distance(
                                            QgsGeometry().fromPoint(b_point))
                                    feature = QgsFeature()
                                    feature.setGeometry(
                                        QgsGeometry.fromPolyline(
                                            [a_point, b_point]))
                                    feature.setAttributes([
                                        desireline_link_id,
                                        int(a_node),
                                        int(b_node), 0, dist,
                                        float(self.matrix[i, j]),
                                        float(self.matrix[j, i]),
                                        float(self.matrix[i, j] +
                                              self.matrix[j, i])
                                    ])
                                    all_features.append(feature)
                                    desireline_link_id += 1
                                else:
                                    tu = (a_node, b_node, self.matrix[i, j],
                                          self.matrix[j, i])
                                    self.report.append(
                                        'No centroids available to depict flow between node {0} and node {1}. AB flow was equal to {2} and BA flow was equal to {3}'
                                        .format(*tu))
                    else:
                        q += self.matrix.shape[1]
                        self.emit(SIGNAL("ProgressValue(PyQt_PyObject)"),
                                  (0, q))

                if desireline_link_id > 1:
                    a = dlpr.addFeatures(all_features)
                    self.result_layer = desireline_layer
                else:
                    self.error = 'Nothing to show'

            elif self.dl_type == "DelaunayLines":

                self.emit(SIGNAL("ProgressText (PyQt_PyObject)"),
                          (0, "Computing Delaunay Triangles"))
                points = []
                seccond_relation = {}
                i = 0
                for k, v in all_centroids.iteritems():
                    points.append(v)
                    seccond_relation[i] = k
                    i += 1

                tri = Delaunay(np.array(points))

                #We process all the triangles to only get each edge once
                self.emit(SIGNAL("ProgressText (PyQt_PyObject)"),
                          (0, "Building Delaunay Network: Collecting Edges"))
                edges = []
                if self.python_version == 32:
                    all_edges = tri.vertices
                else:
                    all_edges = tri.simplices

                for triangle in all_edges:
                    links = list(itertools.combinations(triangle, 2))
                    for i in links:
                        l = [min(i[0], i[1]), max(i[0], i[1])]
                        if l not in edges:
                            edges.append(l)

                #Writing Delaunay layer
                self.emit(SIGNAL("ProgressText (PyQt_PyObject)"),
                          (0, "Building Delaunay Network: Assembling Layer"))

                desireline_link_id = 1
                data = []
                dl_link_ids = {}
                for edge in edges:
                    a_node = seccond_relation[edge[0]]
                    a_point = all_centroids[a_node]
                    a_point = QgsPoint(a_point[0], a_point[1])
                    b_node = seccond_relation[edge[1]]
                    b_point = all_centroids[b_node]
                    b_point = QgsPoint(b_point[0], b_point[1])
                    dist = QgsGeometry().fromPoint(a_point).distance(
                        QgsGeometry().fromPoint(b_point))
                    line = []
                    line.append(desireline_link_id)
                    line.append(self.matrix_hash[a_node])
                    line.append(self.matrix_hash[b_node])
                    line.append(dist)
                    line.append(dist)
                    line.append(0)
                    data.append(line)
                    if a_node not in dl_link_ids.keys():
                        dl_link_ids[a_node] = {}
                    dl_link_ids[a_node][b_node] = desireline_link_id
                    desireline_link_id += 1

                self.emit(SIGNAL("ProgressText (PyQt_PyObject)"),
                          (0, "Building graph"))
                network = np.asarray(data)
                del data

                #types for the network
                all_types = [
                    np.int64, np.int64, np.int64, np.float64, np.float64,
                    np.int64
                ]
                all_titles = [
                    'link_id', 'a_node', 'b_node', 'length_ab', 'length_ba',
                    'direction'
                ]
                dt = [(t, d) for t, d in zip(all_titles, all_types)]

                self.graph = Graph()
                self.graph.network = np.zeros(network.shape[0], dtype=dt)

                for k, t in enumerate(dt):
                    self.graph.network[t[0]] = network[:, k].astype(t[1])
                del network

                self.graph.type_loaded = 'NETWORK'
                self.graph.status = 'OK'
                self.graph.network_ok = True
                self.graph.prepare_graph()

                self.graph.set_graph(matrix_nodes,
                                     cost_field='length',
                                     block_centroid_flows=False)
                self.results = AssignmentResults()
                self.results.prepare(self.graph)
                # self.results.set_cores(1)

                self.emit(SIGNAL("ProgressText (PyQt_PyObject)"),
                          (0, "Assigning demand"))
                # Do the assignment
                #self.all_or_nothing(self.matrix, self.graph, self.results)
                self.report = all_or_nothing(self.matrix, self.graph,
                                             self.results)

                self.emit(SIGNAL("ProgressText (PyQt_PyObject)"),
                          (0, "Collecting results"))
                f = self.results.link_loads

                link_loads = np.zeros((f.shape[0] + 1, 2))
                self.emit(SIGNAL("ProgressMaxValue(PyQt_PyObject)"),
                          (0, f.shape[0] - 1))
                for i in range(f.shape[0] - 1):
                    self.emit(SIGNAL("ProgressValue(PyQt_PyObject)"), (0, i))
                    direction = self.graph.graph['direction'][i]
                    link_id = self.graph.graph['link_id'][i]
                    flow = f[i]
                    if direction == 1:
                        link_loads[link_id, 0] = flow
                    else:
                        link_loads[link_id, 1] = flow

                self.emit(SIGNAL("ProgressText (PyQt_PyObject)"),
                          (0, "Building resulting layer"))
                features = []
                max_edges = len(edges)
                self.emit(SIGNAL("ProgressMaxValue(PyQt_PyObject)"),
                          (0, max_edges))

                for i, edge in enumerate(edges):
                    self.emit(SIGNAL("ProgressValue(PyQt_PyObject)"), (0, i))
                    a_node = seccond_relation[edge[0]]
                    a_point = all_centroids[a_node]
                    a_point = QgsPoint(a_point[0], a_point[1])
                    b_node = seccond_relation[edge[1]]
                    b_point = all_centroids[b_node]
                    b_point = QgsPoint(b_point[0], b_point[1])
                    dist = QgsGeometry().fromPoint(a_point).distance(
                        QgsGeometry().fromPoint(b_point))

                    feature = QgsFeature()
                    feature.setGeometry(
                        QgsGeometry.fromPolyline([a_point, b_point]))
                    desireline_link_id = dl_link_ids[a_node][b_node]
                    feature.setAttributes([
                        desireline_link_id, a_node, b_node, 0, dist,
                        float(link_loads[desireline_link_id, 0]),
                        float(link_loads[desireline_link_id, 1]),
                        float(link_loads[desireline_link_id, 0] +
                              link_loads[desireline_link_id, 1])
                    ])
                    features.append(feature)
                a = dlpr.addFeatures(features)
                self.result_layer = desireline_layer

        self.emit(SIGNAL("finished_threaded_procedure( PyQt_PyObject )"), True)