plt.subplot(313) plt.ylabel('$T_{i4}/T_{i3}$', fontsize=10) plt.ylabel('$M_{3}$', fontsize=10) plt.grid(which='major', linestyle=':', alpha=0.5) # --- (FS) fully supersonic flow (not expected on design) M3sup = mf.Mach_Sigma(A3A2*mf.Sigma_Mach(M2, gam), gam) M4max = mf.Mach_Sigma(A3A2/A8A2, 2., gam) # look for supersonic value alphamax = ray.Ti_Ticri(M4max, gam)/ray.Ti_Ticri(M3sup, gam) print "unchoking of fully supersonic flow for Ti4/Ti0 = %6.3f"%(alphamax) FSalpha = np.log10(np.logspace(1., alphamax, npts+1)) FSm4 = ray.SupMach_TiTicri(FSalpha/alphamax*ray.Ti_Ticri(M4max, gam), gam) FSpi4 = ray.Pi_Picri(FSm4, gam)/ray.Pi_Picri(M3sup, gam) FSpi3 = np.ones(npts+1) FSm3 = M3sup*np.ones(npts+1) plt.subplot(311) plt.plot(FSalpha, FSpi3, '-', color='#ff0000') plt.subplot(312) plt.plot(FSalpha, FSpi4, '-', color='#ff0000') plt.subplot(313) plt.plot(FSalpha, FSm3, '-', color='#ff0000') # --- (CW) conventional working state # M8 is sonic so M4 is known CWm4 = mf.Mach_Sigma(A3A2/A8A2, .1, gam) # look for subsonic value
import numpy as np import matplotlib.pyplot as plt import aero.Rayleigh as ray npoints = 200 gam = 1.4 Mmin = 0.1 Mmax = 4. Mach = np.log10(np.logspace(Mmin, Mmax, npoints + 1)) Tparam = ray.maxTiratio_Mach(Mach, gam) Ts = ray.Ts_Tscri(Mach, gam) Ti = ray.Ti_Ticri(Mach, gam) Ps = ray.Ps_Pscri(Mach, gam) Pi = ray.Pi_Picri(Mach, gam) V = ray.V_Vcri(Mach, gam) dS = ray.NormdS(Mach, gam) fig = plt.figure(1, figsize=(10, 8)) fig.suptitle('Ratio to critical state, $\gamma = %.1f$' % gam, fontsize=12, y=0.93) #plt.plot(Mach, Tparam, 'k--') plt.plot(Mach, Ti, '-', color='#ff0000') plt.plot(Mach, Ts, '-', color='#882222') plt.plot(Mach, Pi, '-', color='#0000ff') plt.plot(Mach, Ps, '-', color='#222288') plt.plot(Mach, V, '-', color='#009999') plt.legend([ '$T_i/T_i^\star$', '$T_s/T^\star$', '$p_i/p_i^\star$', '$p_s/p^\star$',