示例#1
0
plt.subplot(313)
plt.ylabel('$T_{i4}/T_{i3}$', fontsize=10)
plt.ylabel('$M_{3}$', fontsize=10)
plt.grid(which='major', linestyle=':', alpha=0.5)

# --- (FS) fully supersonic flow (not expected on design)

M3sup    = mf.Mach_Sigma(A3A2*mf.Sigma_Mach(M2, gam), gam)
M4max    = mf.Mach_Sigma(A3A2/A8A2, 2., gam)  # look for supersonic value
alphamax = ray.Ti_Ticri(M4max, gam)/ray.Ti_Ticri(M3sup, gam)
print "unchoking of fully supersonic flow for Ti4/Ti0 = %6.3f"%(alphamax)

FSalpha = np.log10(np.logspace(1., alphamax, npts+1))
FSm4    = ray.SupMach_TiTicri(FSalpha/alphamax*ray.Ti_Ticri(M4max, gam), gam)
FSpi4   = ray.Pi_Picri(FSm4, gam)/ray.Pi_Picri(M3sup, gam)
FSpi3   = np.ones(npts+1)
FSm3    = M3sup*np.ones(npts+1)

plt.subplot(311)
plt.plot(FSalpha, FSpi3, '-', color='#ff0000')
plt.subplot(312)
plt.plot(FSalpha, FSpi4, '-', color='#ff0000')
plt.subplot(313)
plt.plot(FSalpha, FSm3, '-', color='#ff0000')

# --- (CW) conventional working state

# M8 is sonic so M4 is known
CWm4 = mf.Mach_Sigma(A3A2/A8A2, .1, gam)  # look for subsonic value
示例#2
0
import numpy as np
import matplotlib.pyplot as plt
import aero.Rayleigh as ray

npoints = 200
gam = 1.4

Mmin = 0.1
Mmax = 4.

Mach = np.log10(np.logspace(Mmin, Mmax, npoints + 1))
Tparam = ray.maxTiratio_Mach(Mach, gam)
Ts = ray.Ts_Tscri(Mach, gam)
Ti = ray.Ti_Ticri(Mach, gam)
Ps = ray.Ps_Pscri(Mach, gam)
Pi = ray.Pi_Picri(Mach, gam)
V = ray.V_Vcri(Mach, gam)
dS = ray.NormdS(Mach, gam)

fig = plt.figure(1, figsize=(10, 8))
fig.suptitle('Ratio to critical state, $\gamma = %.1f$' % gam,
             fontsize=12,
             y=0.93)
#plt.plot(Mach, Tparam, 'k--')
plt.plot(Mach, Ti, '-', color='#ff0000')
plt.plot(Mach, Ts, '-', color='#882222')
plt.plot(Mach, Pi, '-', color='#0000ff')
plt.plot(Mach, Ps, '-', color='#222288')
plt.plot(Mach, V, '-', color='#009999')
plt.legend([
    '$T_i/T_i^\star$', '$T_s/T^\star$', '$p_i/p_i^\star$', '$p_s/p^\star$',