示例#1
0
文件: module.py 项目: belac626/AeroPy
    def shape_difference(inputs, optimize_deltaz=False):

        if optimize_deltaz == True or optimize_deltaz == [True]:
            y_u = CST(upper['x'],
                      1,
                      deltasz=inputs[-1] / 2.,
                      Au=list(inputs[:n + 1]))
            y_l = CST(lower['x'],
                      1,
                      deltasz=inputs[-1] / 2.,
                      Al=list(inputs[n + 1:-1]))
        else:
            y_u = CST(upper['x'],
                      1,
                      deltasz=deltaz / 2.,
                      Au=list(inputs[:n + 1]))
            y_l = CST(lower['x'],
                      1,
                      deltasz=deltaz / 2.,
                      Al=list(inputs[n + 1:]))
        # Vector to be compared with
        a_u = {'x': upper['x'], 'y': y_u}
        a_l = {'x': lower['x'], 'y': y_l}

        b_u = upper
        b_l = lower
        return hausdorff_distance_2D(a_u, b_u) + hausdorff_distance_2D(
            a_l, b_l)
示例#2
0
文件: core.py 项目: swartmilan/AeroPy
def calculate_spar_distance(psi_baseline, Au_baseline, Au_goal, Al_goal,
                            deltaz, c_goal):
    """Calculate spar distance (dimensional)"""
    def f(psi_lower_goal):
        y_lower_goal = CST(psi_lower_goal * c_goal, c_goal,
                           [deltaz / 2., deltaz / 2.], Au_goal, Al_goal)
        y_lower_goal = y_lower_goal['l']
        return psi_upper_goal + (s[0] / s[1]) * (y_lower_goal -
                                                 y_upper_goal) / c_goal

    # Calculate cruise chord
    c_baseline = calculate_c_baseline(c_goal, Au_baseline, Au_goal, deltaz)

    # Calculate upper psi at goal airfoil
    psi_upper_goal = calculate_psi_goal(psi_baseline, Au_baseline, Au_goal,
                                        deltaz, c_baseline, c_goal)
    y_upper_goal = CST(psi_upper_goal * c_goal, c_goal,
                       [deltaz / 2., deltaz / 2.], Au_goal, Al_goal)
    y_upper_goal = y_upper_goal['u']

    # Spar direction
    s = calculate_spar_direction(psi_baseline, Au_baseline, Au_goal, deltaz,
                                 c_goal)

    # Calculate lower psi and xi at goal airfoil
    # Because the iterative method can lead to warningdivision by zero after
    # converging, we ignore the warning
    np.seterr(divide='ignore', invalid='ignore')
    psi_lower_goal = optimize.fixed_point(f, [psi_upper_goal])
    x_lower_goal = psi_lower_goal * c_goal
    y_lower_goal = CST(x_lower_goal, c_goal, [deltaz / 2., deltaz / 2.],
                       Au_goal, Al_goal)
    y_lower_goal = y_lower_goal['l']

    return (y_upper_goal - y_lower_goal[0]) / s[1]
示例#3
0
    def shape_difference(inputs, optimize_deltaz=False, surface=surface):
        # Define deltaz
        if optimize_deltaz is True or optimize_deltaz == [True]:
            deltasz = inputs[-1] / 2.
        else:
            deltasz = deltaz / 2.

        # Calculate upper and lower surface
        if surface == 'both':
            y_u = CST(upper['x'], 1, deltasz=deltasz, Au=list(inputs[:n + 1]))
            y_l = CST(lower['x'],
                      1,
                      deltasz=deltasz,
                      Al=list(inputs[n + 1:-1]))
        elif surface == 'upper':
            y_u = CST(upper['x'], 1, deltasz=deltasz, Au=list(inputs[:n + 1]))
        elif surface == 'lower':
            y_l = CST(lower['x'], 1, deltasz=deltasz, Al=list(inputs[:n + 1]))

        # Vector to be compared with
        error = 0
        if surface == 'upper' or surface == 'both':
            a_u = {'x': upper['x'], 'y': y_u}
            if objective == 'hausdorf':
                error += hausdorff_distance_2D(a_u, upper)
            elif objective == 'squared_mean':
                error += np.mean(
                    (np.array(a_u['x']) - np.array(upper['x']))**2 +
                    (np.array(a_u['y']) - np.array(upper['y']))**2)

        if surface == 'lower' or surface == 'both':
            a_l = {'x': lower['x'], 'y': y_l}
            if objective == 'hausdorf':
                error += hausdorff_distance_2D(a_l, lower)
            elif objective == 'squared_mean':
                error += np.mean(
                    (np.array(a_l['x']) - np.array(lower['x']))**2 +
                    (np.array(a_l['y']) - np.array(lower['y']))**2)

        # plt.figure()
        # plt.scatter(a_u['x'], a_u['y'], c='k')
        # plt.scatter(a_l['x'], a_l['y'], c='b')
        # plt.scatter(upper['x'], upper['y'], c='r')
        # plt.scatter(lower['x'], lower['y'], c='g')
        # plt.show()
        return error
def coefficient_LLT(AC, velocity, AOA):
    Au_P = [0.1828, 0.1179, 0.2079, 0.0850, 0.1874]
    Al_P = Au_P
    deltaz = 0

    # Determine children shape coeffcients
    AC_u = list(data.values[i, 0:4])
    Au_C, Al_C, c_C, spar_thicknesses = calculate_dependent_shape_coefficients(
        AC_u, psi_spars, Au_P, Al_P, deltaz, c_P, morphing=morphing_direction)

    # Calculate aerodynamics for that airfoil
    airfoil = 'optimal'
    x = create_x(1., distribution='linear')
    y = CST(x, 1., [deltaz / 2., deltaz / 2.], Al=Al_C, Au=Au_C)
    # Create file for Xfoil to read coordinates
    xf.create_input(x, y['u'], y['l'], airfoil, different_x_upper_lower=False)
    Data = xf.find_coefficients(airfoil,
                                AOA,
                                Reynolds=Reynolds(10000, velocity, c_C),
                                iteration=100,
                                NACA=False)
    deviation = 0.001
    while Data['CL'] is None:
        Data_aft = xf.find_coefficients(airfoil,
                                        AOA * deviation,
                                        Reynolds=Reynolds(
                                            10000, velocity, c_C),
                                        iteration=100,
                                        NACA=False)
        Data_fwd = xf.find_coefficients(airfoil,
                                        AOA * (1 - deviation),
                                        Reynolds=Reynolds(
                                            10000, velocity, c_C),
                                        iteration=100,
                                        NACA=False)
        try:
            for key in Data:
                Data[key] = (Data_aft[key] + Data_fwd[key]) / 2.
        except:
            deviation += deviation
    alpha_L_0 = xf.find_alpha_L_0(airfoil,
                                  Reynolds=0,
                                  iteration=100,
                                  NACA=False)

    coefficients = LLT_calculator(alpha_L_0,
                                  Data['CD'],
                                  N=100,
                                  b=span,
                                  taper=1.,
                                  chord_root=chord_root,
                                  alpha_root=AOA,
                                  V=velocity)
    lift = coefficients['C_L']
    drag = coefficients['C_D']

    return lift, drag
示例#5
0
文件: core.py 项目: swartmilan/AeroPy
def dxi_u(psi, Au, delta_xi, N1=0.5, N2=1):
    """Calculate upper derivate of xi for a given psi"""
    n = len(Au) - 1

    xi_0 = CST(psi, 1, 0, Au, N1=N1, N2=N2)
    diff = xi_0 * ((1 - n - N2))
    for i in range(n + 1):
        # print N1-1., N2-1.
        # print psi**(N1-1.), (1-psi)**(N2-1.)
        # print Au[i]*K(i,n)*(psi**i)*((1-psi)**(n-i))*(i+N1-psi*(n+N1+N2))
        diff += (psi**(N1-1))*((1-psi)**(N2-1)) * \
            Au[i]*K(i, n)*(psi**i)*((1-psi)**(n-i))*(i+N1-psi*(n+N1+N2))
    return diff
示例#6
0
 def _x3_CST(self, x1, diff=None):
     N1 = 1.
     N2 = 1.
     A0 = self.tip_displacement / max(x1)
     A = [A0] + list(self.D)
     if diff is None:
         return (CST(x1,
                     max(x1),
                     deltasz=self.tip_displacement,
                     Au=A,
                     N1=N1,
                     N2=N2))
     elif diff == 'x1':
         psi = x1 / max(x1)
         return (dxi_u(psi, A, delta_xi, N1=N1, N2=N2))
     elif diff == 'x11':
         return (ddxi_u(psi, A, N1=N1, N2=N2))
     elif diff == 'theta3':
         return (np.zeros(len(x1)))
示例#7
0
    # tracing :
    A = calculate_shape_coefficients_tracing(AC_u0, ValX, ValY, 0.5, 1., c_C,
                                             deltaz)
    # structurally_consistent :
    Au_C, Al_C, c_C, spar_thicknesses = calculate_dependent_shape_coefficients(
        A[1:], psi_spars, Au_P, Al_P, deltaz, c_P, morphing=morphing_direction)
    error = abs((AC_u0 - Au_C[0]) / AC_u0)
    print('Iteration: ' + str(counter) + ', Error: ' + str(error))
    AC_u0 = Au_C[0]
    counter += 1

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Plotting :
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
x = np.linspace(0, c_C, 1000)
y = CST(x, c_C, deltasz=[deltaz / 2., deltaz / 2.], Al=Al_C, Au=Au_C)
plt.plot(x, y['u'], 'b', label='Children', lw=2)
plt.plot(x, y['l'], 'b', label=None, lw=2)

# Print shape for parent
x = np.linspace(0, c_P, 1000)
y = CST(x, c_P, deltasz=[deltaz / 2., deltaz / 2.], Al=Al_P, Au=Au_P)
plt.plot(x, y['u'], 'r--', label='Parent', lw=2)
plt.plot(x, y['l'], 'r--', label=None, lw=2)

if morphing_direction == 'forwards':
    psi_flats = []
    intersections_x_children = [0]
    intersections_y_children = [0]
    intersections_x_parent = [0]
    intersections_y_parent = [0]
示例#8
0
def calculate_camber(psi, Au, Al, delta_xi):
    xi = CST(psi, 1., [delta_xi/2., delta_xi/2.], Au, Al)
    return (xi['u']+xi['l'])/2.
示例#9
0
def calculate_average_camber(Au, Al, delta_xi):
    psi = np.linspace(0, 1, 1000)
    xi = CST(psi, 1., [delta_xi/2., delta_xi/2.], Au, Al)
    camber = (xi['u']+xi['l'])/2.
    return np.average(np.absolute(camber))
示例#10
0
def aerodynamic_performance(AC, psi_spars, Au_P, Al_P, c_P, deltaz, alpha, H,
                            V):
    morphing_direction = 'forwards'

    air_data = air_properties(H, unit='feet')
    density = air_data['Density']
    dyn_pressure = .5 * density * V**2

    # Generate dependent shape coefficients
    # try:
    Au_C, Al_C, c_C, spar_thicknesses = calculate_dependent_shape_coefficients(
        AC, psi_spars, Au_P, Al_P, deltaz, c_P, morphing=morphing_direction)

    # print 'Reynolds: ', Reynolds(H, V, c_C)
    # Generate aifoil file
    airfoil = 'test'
    x = create_x(1., distribution='linear', n=300)
    y = CST(x, 1., [deltaz / 2., deltaz / 2.], Au=Au_C, Al=Al_C)

    # Get strain data
    strains, av_strain = calculate_strains(Au_P, Al_P, c_P, Au_C, Al_C, c_C,
                                           deltaz, psi_spars, spar_thicknesses)

    intersections = intersect_curves(x, y['l'], x, y['u'])
    print(intersections, intersections[0][1:])
    if len(intersections[0][1:]) == 0:
        # print y
        create_input(x, y['u'], y['l'], airfoil, different_x_upper_lower=False)

        # Get aerodynamic data
        print(airfoil, alpha, Reynolds(H, V, c_C))
        Data = find_coefficients(airfoil,
                                 alpha,
                                 Reynolds=Reynolds(H, V, c_C),
                                 iteration=200,
                                 NACA=False,
                                 delete=True,
                                 PANE=True,
                                 GDES=True)

        # plot_airfoil(AC, psi_spars, c_P, deltaz, Au_P, Al_P, image = 'save', iteration=counter, dir = airfoil+'_dir')

        # filtering data (for now I only care about negative strains
        str_output = {
            'CL': Data['CL'],
            'CD': Data['CD'],
            'CM': Data['CM'],
            'av_strain': av_strain,
            'Au_C': Au_C,
            'Al_C': Al_C,
            'spars': psi_spars
        }

        if Data['CM'] == None:
            str_output['lift'] = None
            str_output['drag'] = None
            str_output['moment'] = None
        else:
            str_output['lift'] = Data['CL'] / dyn_pressure / c_C,
            str_output['drag'] = Data['CD'] / dyn_pressure / c_C,
            str_output['moment'] = Data['CM'] / dyn_pressure / c_C
        for i in range(len(strains)):
            str_output['strain_' + str(i)] = strains[i]

        # Writing to a text file
        # f_worker = open(str(airfoil) + '.txt', 'wb')
        # for i in range(len(key_list)):
        # if i != len(key_list)-1:
        # if key_list[i][:1] == 'Au':
        # f_worker.write('%f\t' % str_output[key_list[i][:1]+'_C'][int(key_list[i][-1])])
        # else:
        # else:
        # if key_list[i][:1] == 'Au':
        # f_worker.write('%f\n' % str_output[key_list[i][:1]+'_C'][int(key_list[i][-1])])
    else:
        str_output = {
            'CL': 1000,
            'CD': None,
            'CM': None,
            'av_strain': av_strain,
            'spars': psi_spars,
            'Au_C': Au_C,
            'Al_C': Al_C,
            'lift': None,
            'drag': None,
            'moment': None
        }
        for i in range(len(strains)):
            str_output['strain_' + str(i)] = strains[i]
    # except:
    # str_output = {'CL':None, 'CD':None, 'CM':None, 'av_strain':None,
    # 'Au_C':[None]*len(AC), 'Al_C': [None]*len(AC),
    # 'lift': None, 'drag': None, 'moment':None,
    # 'strains':[None]*(len(AC)-1), 'spars':psi_spars}
    return str_output
示例#11
0
 def f(psi_lower_goal):
     y_lower_goal = CST(psi_lower_goal*c_goal, c_goal,
                        [deltaz/2., deltaz/2.], Au_goal, Al_goal)
     y_lower_goal = y_lower_goal['l']
     return psi_upper_goal + (s[0]/s[1])*(y_lower_goal -
                                          y_upper_goal)/c_goal
示例#12
0
 import matplotlib.pyplot as plt
 #testing = 'structurally_consistent'
 testing = 'tracing'
 
 if testing == 'tracing':
     N1 = 1.
     N2 = 1.
     tip_displacement = {'x': .1, 'y':1.}
     other_points = {'x': [0.01, -0.03, .05, 0.12], 'y':[0.1, 0.3, .5, 0.8]}
     A0 = -tip_displacement['x']
     print(A0)
     A = calculate_shape_coefficients_tracing(A0, tip_displacement, other_points, N1, N2)
     
     #plotting
     y = np.linspace(0, tip_displacement['y'], 100000)
     x = CST(y, tip_displacement['y'], deltasz= tip_displacement['x'],  Au = A, N1=N1, N2=N2)
     plt.plot(x,y)
     plt.scatter(other_points['x'] + [tip_displacement['x']], 
                 other_points['y'] + [tip_displacement['y']])
     plt.gca().set_aspect('equal', adjustable='box')
     plt.show()
     
 elif testing == 'structurally_consistent':
     
     #==============================================================================
     # Inputs
     #==============================================================================
     # Parameter
     c_P = 1.                  #m
     deltaz = 0.*c_P    #m
     
示例#13
0
AOAs = AOAs[0]
velocities = velocities[0]

# data = {'Names':airfoil_database['names'], 'AOA':AOAs, 'V':velocities,
#         'L/D':[], 'Expected':[]}
f = open('aerodynamics_3.p', 'rb')
data = pickle.load(f)
f.close()

for j in range(1145, len(Au_database)):
    data['L/D'].append([])
    print(j, airfoil_database['names'][j])
    Au = Au_database[j, :]
    Al = Al_database[j, :]
    x = create_x(1., distribution = 'linear')
    y = CST(x, chord, deltasz=[du_database[j], dl_database[j]],
                     Al=Al, Au=Au)

    xf.create_input(x, y['u'], y['l'], airfoil, different_x_upper_lower = False)
    for i in range(len(AOAs)):
        AOA = AOAs[i]
        V = velocities[i]
        try:
            Data = xf.find_coefficients(airfoil, AOA,
                                        Reynolds=Reynolds(10000, V, chord),
                                        iteration=100, NACA=False,
                                        delete=True)
            lift_drag_ratio = Data['CL']/Data['CD']
        except:
            lift_drag_ratio = None
            increment = 0.1
            conv_counter = 0
示例#14
0
def generate_geometries_animate(length_0,
                                A,
                                TE_displacement,
                                N1,
                                N2,
                                thickness,
                                x_to_track=[]):
    # new chord
    current_chord = calculate_c(length_0, A, TE_displacement, N1, N2)

    # Get coordinates for specific points in the neutral line
    tracked = {'x': [], 'y': []}
    for x in x_to_track:
        tracked['y'].append(current_chord * calculate_deformed_psi(
            x / length_0, length_0, current_chord, A, TE_displacement)[0])
    tracked['x'] = CST(tracked['y'],
                       current_chord,
                       TE_displacement,
                       Au=A,
                       N1=N1,
                       N2=N2)

    # Get offset values for left side
    left_tracked = {'x': [], 'y': []}
    for i in range(len(x_to_track)):
        dxi = dxi_u(tracked['y'][i] / current_chord, A,
                    TE_displacement / current_chord)
        xi_component = -dxi / (dxi**2 + 1)**.5
        psi_component = 1 / (dxi**2 + 1)**.5

        left_tracked['x'].append(tracked['x'][i] -
                                 thickness / 2 * psi_component)
        left_tracked['y'].append(tracked['y'][i] -
                                 thickness / 2 * xi_component)

    # Get offset values for right side
    right_tracked = {'x': [], 'y': []}
    for i in range(len(x_to_track)):
        dxi = dxi_u(tracked['y'][i] / current_chord, A,
                    TE_displacement / current_chord)
        xi_component = -dxi / (dxi**2 + 1)**.5
        psi_component = 1 / (dxi**2 + 1)**.5

        right_tracked['x'].append(tracked['x'][i] +
                                  thickness / 2 * psi_component)
        right_tracked['y'].append(tracked['y'][i] +
                                  thickness / 2 * xi_component)

    # non-dimensional y coordinates (extend it a little on the bottom to guarantee nice shape)
    psi = np.linspace(-.1, current_chord, 1000)

    # non-dimensional x coordinates
    xi = CST(psi, current_chord, TE_displacement, Au=A, N1=N1, N2=N2)

    # Genrate neutral line
    line = LineString(zip(xi, psi))

    # Create offsets to neutral line
    offset_left = line.parallel_offset(thickness / 2., 'left', join_style=1)
    offset_right = line.parallel_offset(thickness / 2., 'right', join_style=1)

    # Create baffle
    coords = (offset_left.coords[:] + offset_right.coords[::] +
              [offset_left.coords[0]])
    main = Polygon(coords)

    # Remove base material
    coords = ((-1, 0), (-1, -1), (1, -1), (1, 0), (-1, 0))
    root = Polygon(coords)
    main = main.difference(root)

    # 3Plot tracked points
    # plt.scatter(right_tracked['x'],right_tracked['y'],c='c')
    # plt.scatter(left_tracked['x'],left_tracked['y'],c='g')
    # plt.scatter([0]*len(x_to_track),x_to_track, c='b')
    # plt.scatter(tracked['x'],tracked['y'], c='r')

    # Plot geometry
    skin_patch = PolygonPatch(main,
                              facecolor='#909090',
                              edgecolor='#909090',
                              alpha=0.5,
                              zorder=2)

    return skin_patch
示例#15
0
def plot_airfoil(AC,
                 psi_spars,
                 c_P,
                 deltaz,
                 Au_P,
                 Al_P,
                 image='plot',
                 iteration=0,
                 return_coordinates=True,
                 dir='current',
                 morphing_direction='backwards'):
    import matplotlib.pyplot as plt

    # plt.figure()
    n = len(Au_P) - 1
    Au_C, Al_C, c_C, spar_thicknesses = calculate_dependent_shape_coefficients(
        AC, psi_spars, Au_P, Al_P, deltaz, c_P, morphing=morphing_direction)
    print('CST chord', c_C)
    # ==============================================================================
    #  Plot results
    # ==============================================================================
    np.set_printoptions(precision=20)
    x = np.linspace(0, c_C, 1000)
    y = CST(x, c_C, deltasz=[deltaz / 2., deltaz / 2.], Al=Al_C, Au=Au_C)
    plt.plot(x, y['u'], 'b', label='Children', lw=1)
    plt.plot(x, y['l'], '-b', label=None, lw=1)

    # store variables in case return_coordinates is True
    x = list(x[::-1]) + list(x[1:])
    y = list(y['u'][::-1]) + list(y['l'][1:])

    children_coordinates = {'x': x, 'y': y}
    x = np.linspace(0, c_P, 1000)
    y = CST(x, c_P, deltasz=[deltaz / 2., deltaz / 2.], Al=Al_P, Au=Au_P)
    plt.plot(x, y['u'], 'r--', label='Parent', lw=1)
    plt.plot(x, y['l'], 'r--', label=None, lw=1)

    y_limits = y

    if morphing_direction == 'backwards':
        for i in range(len(psi_spars)):
            psi_i = psi_spars[i]
            # Calculate psi at landing
            psi_goal_i = calculate_psi_goal(psi_i, Au_C, Au_P, deltaz, c_C,
                                            c_P)
            x_goal_i = psi_goal_i * c_P
            # Calculate xi at landing
            temp = CST(x_goal_i,
                       c_P, [deltaz / 2., deltaz / 2.],
                       Al=Al_P,
                       Au=Au_P)
            y_goal_i = temp['u']

            # calculate spar direction
            s = calculate_spar_direction(psi_i, Au_C, Au_P, deltaz, c_P)

            plt.plot([x_goal_i, x_goal_i - spar_thicknesses[i] * s[0]],
                     [y_goal_i, y_goal_i - spar_thicknesses[i] * s[1]], 'r--')

            y = CST(np.array([psi_i * c_C]),
                    c_C,
                    deltasz=[deltaz / 2., deltaz / 2.],
                    Al=Al_C,
                    Au=Au_C)
            plt.plot([psi_i * c_C, psi_i * c_C],
                     [y['u'], y['u'] - spar_thicknesses[i]],
                     'b',
                     label=None)
    elif morphing_direction == 'forwards':
        for j in range(len(psi_spars)):
            psi_parent_j = psi_spars[j]
            # Calculate psi at landing
            # psi_baseline, Au_baseline, Au_goal, deltaz, c_baseline, c_goal
            psi_children_j = calculate_psi_goal(psi_parent_j, Au_P, Au_C,
                                                deltaz, c_P, c_C)
            x_children_j = psi_children_j * c_C

            # Calculate xi at landing
            temp = CST(x_children_j,
                       c_C, [deltaz / 2., deltaz / 2.],
                       Al=Al_C,
                       Au=Au_C)
            y_children_j = temp['u']

            s = calculate_spar_direction(psi_spars[j], Au_P, Au_C, deltaz, c_C)

            # Print spars for children
            if not inverted:
                plt.plot(
                    [x_children_j, x_children_j - spar_thicknesses[j] * s[0]],
                    [y_children_j, y_children_j - spar_thicknesses[j] * s[1]],
                    c='b',
                    lw=1,
                    label=None)
            else:
                plt.plot([
                    x_children_j, x_children_j - spar_thicknesses[j] * s[0]
                ], [-y_children_j, -y_children_j + spar_thicknesses[j] * s[1]],
                         c='b',
                         lw=1,
                         label=None)

            y = CST(np.array([psi_parent_j * c_P]),
                    c_P,
                    deltasz=[deltaz / 2., deltaz / 2.],
                    Al=Al_P,
                    Au=Au_P)

            # Print spars for parents
            if not inverted:
                plt.plot([psi_parent_j * c_P, psi_parent_j * c_P],
                         [y['u'], y['u'] - spar_thicknesses[j]],
                         'r--',
                         lw=1,
                         label=None)
            else:
                plt.plot([psi_parent_j * c_P, psi_parent_j * c_P],
                         [-y['u'], -y['u'] + spar_thicknesses[j]],
                         'r--',
                         lw=1,
                         label=None)
                plt.plot([psi_i * c_C, psi_i * c_C],
                         [y['u'], y['u'] - spar_thicknesses[i]],
                         'b',
                         label=None)
    plt.xlabel('$\psi$', fontsize=16)
    plt.ylabel(r'$\xi$', fontsize=16)
    plt.grid()
    plt.legend(loc="upper right")
    plt.gca().set_aspect(2, adjustable='box')
    x1, x2, y1, y2 = plt.axis()
    plt.axis((x1, x2, y1, 2 * y2))

    # plt.axis([-0.005, c_L+0.005, min(y_limits['l'])-0.005, max(y_limits['l'])+0.01])
    if image == 'plot':
        plt.show()
    elif image == 'save':
        if dir == 'current':
            plt.savefig('%03i.pdf' % (iteration), bbox_inches='tight')
        else:
            cwd = os.getcwd()
            directory = os.path.join(cwd, dir)
            if not os.path.exists(directory):
                os.makedirs(directory)

            filename = os.path.join(directory, '%05i.png' % (iteration))
            plt.savefig(filename, bbox_inches='tight')
    if return_coordinates:
        return children_coordinates
示例#16
0
def generate_geometries(length_0,
                        A,
                        TE_displacement,
                        N1,
                        N2,
                        thickness,
                        x_to_track=[]):
    # new chord
    current_chord = calculate_c(length_0, A, TE_displacement, N1, N2)

    # Get coordinates for specific points in the neutral line
    tracked = {'x': [], 'y': []}
    for x in x_to_track:
        tracked['y'].append(current_chord * calculate_deformed_psi(
            x / length_0, length_0, current_chord, A, TE_displacement)[0])
    tracked['x'] = CST(tracked['y'],
                       current_chord,
                       TE_displacement,
                       Au=A,
                       N1=N1,
                       N2=N2)

    # Get offset values for left side
    left_tracked = {'x': [], 'y': []}
    for i in range(len(x_to_track)):
        dxi = dxi_u(tracked['y'][i] / current_chord, A,
                    TE_displacement / current_chord, N1, N2)
        xi_component = -dxi / (dxi**2 + 1)**.5
        psi_component = 1 / (dxi**2 + 1)**.5

        left_tracked['x'].append(tracked['x'][i] -
                                 thickness / 2 * psi_component)
        left_tracked['y'].append(tracked['y'][i] -
                                 thickness / 2 * xi_component)

    # Get offset values for right side
    right_tracked = {'x': [], 'y': []}
    for i in range(len(x_to_track)):
        dxi = dxi_u(tracked['y'][i] / current_chord, A,
                    TE_displacement / current_chord, N1, N2)
        xi_component = -dxi / (dxi**2 + 1)**.5
        psi_component = 1 / (dxi**2 + 1)**.5

        right_tracked['x'].append(tracked['x'][i] +
                                  thickness / 2 * psi_component)
        right_tracked['y'].append(tracked['y'][i] +
                                  thickness / 2 * xi_component)

    # non-dimensional y coordinates (extend it a little on the bottom to guarantee nice shape)
    psi = np.linspace(-.1, current_chord, 1000)

    # non-dimensional x coordinates
    xi = CST(psi, current_chord, TE_displacement, Au=A, N1=N1, N2=N2)

    fig = plt.figure(1, figsize=SIZE, dpi=90)
    ax = fig.add_subplot(111)
    ax.set_aspect('equal')

    # Genrate neutral line
    line = LineString(zip(xi, psi))

    # Create offsets to neutral line
    offset_left = line.parallel_offset(thickness / 2., 'left', join_style=1)
    offset_right = line.parallel_offset(thickness / 2., 'right', join_style=1)

    # Create baffle
    coords = (offset_left.coords[:] + offset_right.coords[::] +
              [offset_left.coords[0]])
    main = Polygon(coords)

    # Remove base material
    coords = ((-1, 0), (-1, -1), (1, -1), (1, 0), (-1, 0))
    root = Polygon(coords)
    main = main.difference(root)

    # Plot tracked points
    plt.scatter(right_tracked['x'], right_tracked['y'], c='c')
    plt.scatter(left_tracked['x'], left_tracked['y'], c='g')
    plt.scatter([0] * len(x_to_track), x_to_track, c='b')
    plt.scatter(tracked['x'], tracked['y'], c='r')

    # Plot geometry
    skin_patch = PolygonPatch(main,
                              facecolor='#808080',
                              edgecolor='#808080',
                              alpha=0.5,
                              zorder=2)
    ax.add_patch(skin_patch)
    plt.xlabel('x', fontsize=14)
    plt.ylabel('y', fontsize=14)
    plt.grid()
    plt.show()

    # Get the flag
    flags = []
    x, y = find_point_inside(main)
    flags.append((x, y))
    # Export data
    data_main = extract_poly_coords(main)

    data = {
        'model': data_main,
        'flags': flags,
        'left': left_tracked,
        'right': right_tracked
    }

    output_file = 'curves.p'
    fileObject = open(output_file, 'wb')
    pickle.dump(data, fileObject)
    fileObject.close()
示例#17
0
length_0 = 1.

# Delta x
TE_displacement = 0.1

# Shape coefficients
A = [-TE_displacement, 0.2]

# new chord
current_chord = calculate_c(length_0, A, TE_displacement, N1, N2)
#current_chord = 1
# non-dimensional y coordinates
y = np.linspace(0, current_chord)

# non-dimensional x coordinates
x = CST(y, current_chord, TE_displacement, Au=A, N1=N1, N2=N2)

dxi = dxi_u(psi=np.array(y) / current_chord,
            Au=A,
            delta_xi=TE_displacement / current_chord,
            N1=N1,
            N2=N2)

# Plotting
plt.plot(x, y, label='A = ' + str(A[0]))
plt.plot(dxi, y, label='dxi')
plt.axis('equal')
plt.legend()
plt.grid()
plt.xlabel(r'$x$', fontsize=14.)
plt.ylabel('$y$', fontsize=14.)
示例#18
0
文件: module.py 项目: belac626/AeroPy
        Au_C[0] = x_i
        c_i = calculate_c_baseline(c_L, Au_C, Au_L, deltaz)
        c.append(c_i)
    plt.plot(x, c)
    plt.xlabel('$A_{u_0}^C$', fontsize=14)
    plt.ylabel('$c^C$', fontsize=14)
    plt.grid()
    plt.show()

    # Plot airfoils for different Au
    plt.figure()
    psi = np.linspace(0, 1, 500)
    i = 0
    for c_i in c:
        Au_C[0] = x[i]
        y = CST(psi, 1, [deltaz / 2., deltaz / 2.], Au_C, Al_C)
        x_plot = np.linspace(0, c_i, 500)
        plt.plot(x_plot, c_i * y['u'], label='$A_{u_0}$ = %.1f' % x[i])
        y_psi = CST(psi_i, 1, [deltaz / 2., deltaz / 2.], Au_C, Al_C)
        i += 1
    plt.xlabel(r'$\psi^C$', fontsize=14)
    plt.ylabel(r'$\xi^C$', fontsize=14)
    plt.legend()
    plt.gca().set_aspect('equal', adjustable='box')
    plt.grid()
    plt.show()

    # Plot for several testing calculat_psi_goal
    plt.figure()
    x = np.linspace(0., 1., 6)
    psi_goal_list = []
示例#19
0
import numpy as np
import matplotlib.pyplot as plt

import aeropy.xfoil_module as xf
from aeropy.CST.module_2D import *
from aeropy.aero_module import Reynolds
from aeropy.geometry.airfoil import CST, create_x

# Au = [0.23993240191629417, 0.34468227138908186, 0.18125405377549103,
# 0.35371349126072665, 0.2440815012119143, 0.25724974995738387]
# Al = [0.18889012559339036, -0.24686758992053115, 0.077569769493868401,
# -0.547827192265256, -0.0047342206759065641, -0.23994805474814629]
Au = [0.172802, 0.167353, 0.130747, 0.172053, 0.112797, 0.168891]
Al = Au
# c_avian = 0.36                  #m
# deltaz = 0.0093943568219451313*c_avian
c_avian = 1.
deltaz = 0

airfoil = 'avian'
x = create_x(1., distribution='linear')
y = CST(x, 1., [deltaz / 2., deltaz / 2.], Au=Au, Al=Al)
# Create file for Xfoil to read coordinates
xf.create_input(x, y['u'], y['l'], airfoil, different_x_upper_lower=False)
print('Reynolds: ', Reynolds(10000, 30, c_avian))
Data = xf.find_coefficients(airfoil,
                            0.,
                            Reynolds=Reynolds(10000, 30, c_avian),
                            iteration=100,
                            NACA=False)
print(Data)
示例#20
0
import matplotlib.pyplot as plt
import numpy as np

from aeropy.geometry.airfoil import create_x, CST

plt.figure()
A = [1., 2., 1.]
deltaz = 0.2
x = create_x(1, distribution='polar')
for i in range(len(A)):
    A_i = [0, 0, 0]
    A_i[i] = A[i]
    y = CST(x, 1., deltaz, A_i)
    plt.plot(x, y, '--')
y = CST(x, 1., deltaz, A)
plt.plot(x, y, 'k')
plt.axis('equal')
plt.grid()
plt.xlim([0, 1])
plt.xlabel('$\psi$', fontsize=14)
plt.ylabel(r'$\xi$', fontsize=14)
plt.show()

plt.figure()
A = [1.]
N1 = [.5, 1., .5]
N2 = [1., 1., .5]
deltaz = 0.0
x = create_x(1, distribution='polar')
for i in range(len(N1)):
    N1_i = N1[i]
示例#21
0
def calculate_dependent_shape_coefficients(BP_p,
                                           BA_p,
                                           BP_c,
                                           chord_p,
                                           sweep_p,
                                           twist_p,
                                           delta_TE_p,
                                           sweep_c,
                                           twist_c,
                                           eta_sampling,
                                           psi_spars,
                                           morphing='camber'):
    """Calculate  dependent shape coefficients for children configuration for a
       4 order Bernstein polynomial and return the children upper, lower shape
       coefficients, children chord and spar thicknesses. _P denotes parent
       parameters"""
    def calculate_BP_c0(BP_c0, c_P, deltaz, j):
        Au_C = extract_A(BP_c, j)
        Au_P = extract_A(BP_p, j)
        c_C = calculate_c_baseline(c_P, Au_C, Au_P, deltaz)
        BP_c[0][j] = np.sqrt(c_P / c_C) * Au_P[0]
        return BP_c[0][j], c_C

    def extract_A(B, j):
        # Extracting shape coefficient data for column j
        A = []
        for i in range(n + 1):
            A.append(B[i][j])
        return A

    # Bersntein Polynomial

    def K(r, n):
        K = math.factorial(n) / (math.factorial(r) * math.factorial(n - r))
        return K

    # Bernstein Polynomial orders (n is for psi, and m for eta)
    n = len(BP_p) - 1
    m = len(BP_p[0]) - 1
    p = len(psi_spars)
    q = len(eta_sampling)
    # print p,q,n,m
    # Define chord, sweep, and twist functions for parent
    chord_p = CST(eta_sampling,
                  chord_p['eta'][1],
                  chord_p['initial'],
                  Au=chord_p['A'],
                  N1=chord_p['N1'],
                  N2=chord_p['N2'],
                  deltasLE=chord_p['final'])
    sweep_p = CST(eta_sampling,
                  sweep_p['eta'][1],
                  deltasz=sweep_p['final'],
                  Au=sweep_p['A'],
                  N1=sweep_p['N1'],
                  N2=sweep_p['N2'])
    chord_p = chord_p[::-1]
    sweep_p = sweep_p
    twist_p = CST(eta_sampling,
                  twist_p['eta'][1],
                  twist_p['initial'],
                  Au=twist_p['A'],
                  N1=twist_p['N1'],
                  N2=twist_p['N2'],
                  deltasLE=twist_p['final'])
    delta_TE_p = CST(eta_sampling,
                     delta_TE_p['eta'][1],
                     delta_TE_p['initial'],
                     Au=delta_TE_p['A'],
                     N1=delta_TE_p['N1'],
                     N2=delta_TE_p['N2'],
                     deltasLE=delta_TE_p['final'])
    # Initialize chord, sweep, and twist functions for child
    chord_c = []
    # Initialize child active matrix
    BA_c = []
    for i in range(n + 1):
        temp = []
        for j in range(m + 1):
            temp.append(0)
        BA_c.append(temp, )
    # Find upper shape coefficient though iterative method since Au_0 is
    # unknown via fixed point iteration
    for k in range(q):
        error = 9999
        BP_c0 = BP_p[0][k]
        while error > 1e-9:
            before = BP_c0
            c_P = chord_p[k]
            deltaz = delta_TE_p[k]
            [BP_c0, c_c] = calculate_BP_c0(BP_c0, c_P, deltaz, k)
            error = abs(BP_c0 - before)
        BP_c[0][k] = BP_c0
        BA_c[0][k] = np.sqrt(c_P / c_c) * BA_p[0][k]
        chord_c.append(c_c)
        print(c_c, BP_c0, np.sqrt(c_P / c_c) * BA_p[0][k])
    # Calculate thickness and tensor C for the constraint linear system problem
    psi_A_c = []

    if morphing == 'camber':
        f = np.zeros((q, p))
        for l in range(q):
            # Converting everything from 3D to 2D framework
            Au_P = extract_A(BP_p, l)
            Al_P = extract_A(BA_p, l)
            Au_C = extract_A(BP_c, l)
            c_P = chord_p[l]
            c_C = chord_c[l]
            deltaz = delta_TE_p[l]

            # psi/xi coordinates for lower surface of children configuration
            psi_lower_children = []
            xi_upper_children = []

            # psi_baseline, Au_baseline, Au_goal, deltaz, c_baseline, c_goal
            psi_upper_children = []
            for j in range(len(psi_spars)):
                psi_i = calculate_psi_goal(psi_spars[j], Au_P, Au_C, deltaz,
                                           c_P, c_C)
                psi_upper_children.append(psi_i)
            # Calculate xi for upper children. Do not care about lower so just
            # gave it random shape coefficients
            xi_upper_children = CST(
                psi_upper_children,
                1.,
                deltasz=[deltaz / 2. / c_C, deltaz / 2. / c_C],
                Al=Au_C,
                Au=Au_C)
            xi_upper_children = xi_upper_children['u']

            # print xi_upper_children

            # Debugging section
            # x = np.linspace(0, 1)
            # y = CST(x, 1., deltasz=[deltaz/2./c_C, deltaz/2./c_C],
            #         Al=Au_C, Au=Au_C)
            # plt.plot(x,y['u'])
            # plt.scatter(psi_upper_children, xi_upper_children)
            # plt.grid()
            # plt.show()
            # BREAK
            for k in range(len(psi_spars)):
                xi_parent = CST(psi_spars,
                                1.,
                                deltasz=[deltaz / 2. / c_P, deltaz / 2. / c_P],
                                Al=Al_P,
                                Au=Au_P)
                delta_k_P = xi_parent['u'][k] - xi_parent['l'][k]
                # t_k = c_P*(delta_k_P)
                # Claculate orientation for children
                s_k = calculate_spar_direction(psi_spars[k], Au_P, Au_C,
                                               deltaz, c_C)
                psi_l_k = psi_upper_children[k] - delta_k_P / c_C * s_k[0]
                xi_l_k = xi_upper_children[k] - delta_k_P / c_C * s_k[1]

                psi_lower_children.append(psi_l_k)

                f_y = 0
                for j in range(m + 1):
                    f_y += BA_c[0][j]*(1-psi_l_k)**n \
                        * (K(j, m)*eta_sampling[l]**j
                           * (1-eta_sampling[l])**(m-j))

                f[l][k] = (2*xi_l_k + psi_l_k*deltaz/c_C) / \
                          (2*(psi_l_k**0.5) * (psi_l_k-1)) - f_y

                # print 'f_y',f_y, eta_sampling[l],m,j
            # Store new children psi values
            psi_A_c.append(psi_lower_children)

        # Initialize F (avoiding using numpy)
        F = np.zeros([q, p, m + 1, n])
        # F = []
        # for l in range(q):
        # tempk = []
        # for k in range(p):
        # tempj = []
        # for j in range(m+1):
        # tempi = []
        # for i in range(n):
        # tempi.append(0.0)
        # tempj.append(tempi)
        # tempk.append(tempj)
        # F.append(tempk)

        # j is the row dimension and i the column dimension in this case
        for l in range(q):
            for k in range(p):
                for j in range(m + 1):
                    for i in range(n):
                        # Because in Python counting starts at 0,
                        # need to add 1 to be coherent for equations
                        ii = i + 1
                        Sx = K(ii, n)*(psi_A_c[l][k]**ii) * \
                            (1-psi_A_c[l][k])**(n-ii)
                        Sy = K(j, m)*(eta_sampling[l]**j) * \
                            (1-eta_sampling[l])**(m-j)
                        F[l][k][j][i] = Sx * Sy

        # print len(F), len(F[0]), len(F[0][0]), len(F[0][0][0])

        # Unfolding tensor
        F_matrix = np.zeros((n**2, n**2))
        f_vector = np.zeros((n**2, 1))
        for l in range(q):
            for k in range(p):
                for j in range(m + 1):
                    for i in range(n):
                        ii = n * (l) + k
                        jj = n * (j) + i

                        F_matrix[ii][jj] = F[l][k][j][i]
                        f_vector[ii] = f[l][k]

        solution = np.linalg.solve(F_matrix, f_vector)

        for j in range(m + 1):
            for i in range(n):
                jj = n * (j) + i
                BA_c[i + 1][j] = solution[jj][0]
        print(BA_c)
    return BA_c, chord_c
示例#22
0
                                        surface=surface,
                                        x0=None)
    if surface == 'both':
        error, fitted_deltaz, fitted_Al, fitted_Au = output
        print(error)
        print(fitted_Al)
        print(fitted_Au)
    elif surface == 'lower':
        error, fitted_deltaz, fitted_Al = output
        print('Coefficients', fitted_Al)

    data = output_reader(filename, separator='\t', header=['x', 'z'])
    plt.scatter(data['x'], data['z'], c='r')
    x = np.linspace(0, 1, 100)
    # y_u = CST(x, 1, deltasz=0, Au=fitted_Au)
    y_l = CST(x, 1, deltasz=0, Al=fitted_Al)
    # plt.plot(x, y_u, 'b')
    plt.plot(x, y_l, 'b')
    plt.show()

    # ==============================================================================
    #   Shape parameter study
    # ==============================================================================
    n = 8
    Data = shape_parameter_study(filename,
                                 n=n,
                                 solver='gradient',
                                 deltaz=0,
                                 objective='squared_mean',
                                 surface='lower')
    plt.figure()
示例#23
0
 i = closest[ii]
 print(i)
 x = designs[i]['x']
 yl_morphing = designs[i]['yl']
 yu_morphing = designs[i]['yu']
 camber_morphing = (yu_morphing + yl_morphing) / 2.
 chord = max(x)
 current_rmse = 1e10
 jjs = np.arange(0, len(Au_database))
 # jjs = np.delete(jjs, 991)
 for j in jjs:
     Au = Au_database[j, :]
     Al = Al_database[j, :]
     y_database = CST(x,
                      chord,
                      deltasz=[du_database[j], dl_database[j]],
                      Al=Al,
                      Au=Au)
     camber_database = (y_database['u'] + y_database['l']) / 2.
     # rmse = np.sqrt(np.mean((camber_morphing - camber_database)**2))
     rmse = np.sqrt(
         np.sum((yl_morphing - y_database['l'])**2 +
                (yu_morphing - y_database['u'])**2) / (2 * len(x)))
     error += 1
     if rmse <= current_rmse:
         closest_database_i = {
             'x': x,
             'yl': y_database['l'],
             'yu': y_database['u'],
             'name': airfoil_database['names'][j],
             'index': j,
示例#24
0
            s=100,
            c='k',
            marker='s',
            label='Centers')
plt.xlabel(r'Angle of Attack (${}^\circ$)')
plt.ylabel('Velocity (m/s)')
plt.legend()
plt.show()

# ==============================================================================
#  Plot results
# ==============================================================================
plt.figure()
np.set_printoptions(precision=20)
x_p = np.linspace(0, c_P, 100000)
y_p = CST(x_p, c_P, deltasz=[deltaz / 2., deltaz / 2.], Al=Al_P, Au=Au_P)
for ii in range(len(closest)):
    i = closest[ii]
    d = designs[i]
    plt.plot(d['x'], d['yu'], colors[ii], label='%i' % ii, lw=2)
    plt.plot(d['x'], d['yl'], colors[ii], label=None, lw=2)
plt.plot(x_p, y_p['u'], 'k--', label='Parent', lw=2)
plt.plot(x_p, y_p['l'], 'k--', label=None, lw=2)
plt.xlabel('$\psi^p$', fontsize=14)
plt.ylabel(r'$\zeta^p$', fontsize=14)
plt.ylim([-0.06, 0.17])
plt.grid()
plt.gca().set_aspect('equal', adjustable='box')
plt.legend(loc=1)
plt.show()
示例#25
0
def calculate_dependent_shape_coefficients(AC_u1, AC_u2, AC_u3, AC_u4, AC_u5,
                                           psi_spars, Au_P, Al_P, deltaz, c_P,
                                           morphing = 'backwards'):
    """Calculate  dependent shape coefficients for children configuration for a 4 order
    Bernstein polynomial and return the children upper, lower shape 
    coefficients, children chord and spar thicknesses. _P denotes parent parameters"""
    def calculate_AC_u0(AC_u0):
        Au_C = [AC_u0, AC_u1, AC_u2, AC_u3, AC_u4, AC_u5]
        c_C = calculate_c_baseline(c_P, Au_C, Au_P, deltaz)
        return np.sqrt(c_P/c_C)*Au_P[0]
    
    # Bersntein Polynomial
    def K(r,n):
        K=math.factorial(n)/(math.factorial(r)*math.factorial(n-r))
        return K
    # Bernstein Polynomial order
    n = 5

    # Find upper shape coefficient though iterative method since Au_0 is unknown
    # via fixed point iteration
    #AC_u0 = optimize.fixed_point(calculate_AC_u0, Au_P[0])
    #print AC_u0
    error = 9999
    AC_u0 = Au_P[0]
    while error > 1e-9:
        before = AC_u0
        AC_u0 = calculate_AC_u0(AC_u0)
        error = abs(AC_u0 - before)

    # Because the output is an array, need the extra [0]      
    Au_C = [AC_u0, AC_u1, AC_u2, AC_u3, AC_u4, AC_u5]
    
    # Now that AC_u0 is known we can calculate the actual chord and AC_l0
    c_C = calculate_c_baseline(c_P, Au_C, Au_P, deltaz/c_P)
    AC_l0 = np.sqrt(c_P/c_C)*Al_P[0]
    print('0 lower shape coefficient: ',AC_l0)
    # Calculate thicknessed and tensor B for the constraint linear system problem
    spar_thicknesses = []
    A0 = AC_u0 + AC_l0
    
    if morphing == 'backwards':
        b_list = np.zeros((n,1))
        for j in range(len(psi_spars)):
            psi_j = psi_spars[j]
            #Calculate the spar thickness in meters from parent, afterwards, need to
            #adimensionalize for the goal airfoil by dividing by c_goal
            t_j = calculate_spar_distance(psi_spars[j], Au_C, Au_P, Al_P, deltaz, c_P)

            spar_thicknesses.append(t_j)
            b_list[j] = (t_j/c_C - psi_j*deltaz/c_C)/((psi_j**0.5)*(1-psi_j)) - A0*(1-psi_j)**n

        B = np.zeros((n,n))
        #j is the row dimension and i the column dimension in this case
        for j in range(n):
            for i in range(n):
                #Because in Python counting starts at 0, need to add 1 to be
                #coherent for equations
                r = i +1
                B[j][i] = K(r,n)*(psi_spars[j]**r)*(1-psi_spars[j])**(n-r)
        
        A_bar = np.dot(inv(B), b_list)

        Al_C = [AC_l0]
        for i in range(len(A_bar)):
            Al_C.append(A_bar[i][0] - Au_C[i+1]) #extra [0] is necessary because of array

    elif morphing == 'forwards':
        f = np.zeros((n,1))
        # psi/xi coordinates for lower surface of the children configuration
        psi_lower_children = []
        xi_lower_children = []
        xi_upper_children = []

        c_C = calculate_c_baseline(c_P, Au_C, Au_P, deltaz)
        # psi_baseline, Au_baseline, Au_goal, deltaz, c_baseline, c_goal
        psi_upper_children = []
        for j in range(len(psi_spars)):
            psi_upper_children.append(calculate_psi_goal(psi_spars[j], Au_P, Au_C, deltaz,
                                   c_P, c_C))
        # Calculate xi for upper children. Do not care about lower so just gave it random shape coefficients
        xi_upper_children = CST(psi_upper_children, 1., deltasz= [deltaz/2./c_C, deltaz/2./c_C],  Al= Au_C, Au =Au_C)
        xi_upper_children = xi_upper_children['u']

        print(xi_upper_children)
        
        #Debugging section
        x = np.linspace(0,1)
        y = CST(x, 1., deltasz= [deltaz/2./c_C, deltaz/2./c_C],  Al= Au_C, Au =Au_C)
        # plt.plot(x,y['u'])
        # plt.scatter(psi_upper_children, xi_upper_children)
        # plt.grid()
        # plt.show()
        # BREAK
        for j in range(len(psi_spars)):
            xi_parent = CST(psi_spars, 1., deltasz= [deltaz/2./c_P, deltaz/2./c_P],  Al= Al_P, Au =Au_P)
            delta_j_P = xi_parent['u'][j]-xi_parent['l'][j]
            t_j = c_P*(delta_j_P)
            # Claculate orientation for children
            s_j = calculate_spar_direction(psi_spars[j], Au_P, Au_C, deltaz, c_C)
            psi_l_j = psi_upper_children[j]-delta_j_P/c_C*s_j[0]
            xi_l_j = xi_upper_children[j]-delta_j_P/c_C*s_j[1]

            spar_thicknesses.append(t_j)
            psi_lower_children.append(psi_l_j)
            xi_lower_children.append(xi_l_j)

            f[j] = (2*xi_l_j + psi_l_j*deltaz/c_C)/(2*(psi_l_j**0.5)*(psi_l_j-1))  - AC_l0*(1-psi_l_j)**n

        F = np.zeros((n,n))
        #j is the row dimension and i the column dimension in this case
        for j in range(n):
            for i in range(n):
                #Because in Python counting starts at 0, need to add 1 to be
                #coherent for equations
                r = i +1
                F[j][i] = K(r,n)*(psi_lower_children[j]**r)*(1-psi_lower_children[j])**(n-r)
        print(F)
        print(f)
        A_lower = np.dot(inv(F), f)

        Al_C = [AC_l0]
        for i in range(len(A_lower)):
            Al_C.append(A_lower[i][0]) #extra [0] is necessary because of array
    return Au_C, Al_C, c_C, spar_thicknesses
示例#26
0
文件: range.py 项目: alexudem/AeroPy
def aircraft_range_LLT(AC, velocity, AOA):
    def to_integrate(weight):
        # velocity = 0.514444*108 # m/s (113 KTAS)

        span = 10.9728
        RPM = 1800
        a = 0.3089  # (lb/hr)/BTU
        b = 0.008 * RPM + 19.607  # lb/hr

        lbhr_to_kgs = 0.000125998
        BHP_to_watt = 745.7

        eta = 0.85

        thrust = weight / lift_to_drag

        power_SI = thrust * velocity / eta
        power_BHP = power_SI / BHP_to_watt
        mass_flow = (a * power_BHP + b)
        mass_flow_SI = mass_flow * lbhr_to_kgs

        SFC = mass_flow_SI / thrust
        dR = velocity / g / SFC * lift_to_drag / weight
        return dR * 0.001  #*0.0005399

    Au_P = [0.1828, 0.1179, 0.2079, 0.0850, 0.1874]
    Al_P = Au_P
    deltaz = 0

    # Determine children shape coeffcients
    AC_u = list(data.values[i, 0:4])
    Au_C, Al_C, c_C, spar_thicknesses = calculate_dependent_shape_coefficients(
        AC_u, psi_spars, Au_P, Al_P, deltaz, c_P, morphing=morphing_direction)

    # Calculate aerodynamics for that airfoil
    airfoil = 'optimal'
    x = create_x(1., distribution='linear')
    y = CST(x, 1., [deltaz / 2., deltaz / 2.], Al=Al_C, Au=Au_C)
    # Create file for Xfoil to read coordinates
    xf.create_input(x, y['u'], y['l'], airfoil, different_x_upper_lower=False)
    Data = xf.find_coefficients(airfoil,
                                AOA,
                                Reynolds=Reynolds(10000, velocity, c_C),
                                iteration=100,
                                NACA=False)
    deviation = 0.001
    while Data['CL'] is None:
        Data_aft = xf.find_coefficients(airfoil,
                                        AOA * deviation,
                                        Reynolds=Reynolds(
                                            10000, velocity, c_C),
                                        iteration=100,
                                        NACA=False)
        Data_fwd = xf.find_coefficients(airfoil,
                                        AOA * (1 - deviation),
                                        Reynolds=Reynolds(
                                            10000, velocity, c_C),
                                        iteration=100,
                                        NACA=False)
        try:
            for key in Data:
                Data[key] = (Data_aft[key] + Data_fwd[key]) / 2.
        except:
            deviation += deviation
    alpha_L_0 = xf.find_alpha_L_0(airfoil,
                                  Reynolds=0,
                                  iteration=100,
                                  NACA=False)

    coefficients = LLT_calculator(alpha_L_0,
                                  Data['CD'],
                                  N=100,
                                  b=span,
                                  taper=1.,
                                  chord_root=chord_root,
                                  alpha_root=AOA,
                                  V=velocity)
    lift_to_drag = coefficients['C_L'] / coefficients['C_D']

    g = 9.81  # kg/ms
    fuel = 56 * 6.01 * 0.4535 * g
    initial_weight = 1111 * g
    final_weight = initial_weight - fuel
    return scipy.integrate.quad(to_integrate, final_weight, initial_weight)[0]