示例#1
0
    def test_maxpool(self):
        # generate flatted images
        maxpoolshps = ((2, 2), (3, 3), (4, 4), (5, 5), (6, 6))
        imval = np.random.rand(4, 5, 10, 10)

        images = dmatrix()
        for maxpoolshp in maxpoolshps:

            # symbolic stuff
            output, outshp = sp.max_pool(images, imval.shape[1:], maxpoolshp)
            f = function(
                [
                    images,
                ],
                [
                    output,
                ],
            )
            output_val = f(imval.reshape(imval.shape[0], -1))

            # numeric verification
            my_output_val = np.zeros(
                (
                    imval.shape[0],
                    imval.shape[1],
                    imval.shape[2] // maxpoolshp[0],
                    imval.shape[3] // maxpoolshp[1],
                )
            )
            assert np.prod(my_output_val.shape[1:]) == np.prod(
                np.r_[imval.shape[1], outshp]
            )

            for n in range(imval.shape[0]):
                for k in range(imval.shape[1]):
                    for i in range(imval.shape[2] // maxpoolshp[0]):
                        for j in range(imval.shape[3] // maxpoolshp[1]):
                            ii, jj = i * maxpoolshp[0], j * maxpoolshp[1]
                            patch = imval[
                                n, k, ii : ii + maxpoolshp[0], jj : jj + maxpoolshp[1]
                            ]
                            my_output_val[n, k, i, j] = np.max(patch)
            my_output_val = my_output_val.reshape(imval.shape[0], -1)
            assert np.all(output_val == my_output_val)

            def mp(input):
                output, outshp = sp.max_pool(input, imval.shape[1:], maxpoolshp)
                return output

            utt.verify_grad(mp, [imval.reshape(imval.shape[0], -1)])
示例#2
0
 def mp(input):
     output, outshp = sp.max_pool(input, imval.shape[1:],
                                  maxpoolshp)
     return output