示例#1
0
文件: opt.py 项目: ricardoV94/aesara
def local_conv2d_gradinputs_cpu(fgraph, node):
    if (
        not isinstance(node.op, AbstractConv2d_gradInputs)
        or node.inputs[0].dtype == "float16"
    ):
        return None

    kern, topgrad, shape = node.inputs

    if not isinstance(kern.type, TensorType) or not isinstance(
        topgrad.type, TensorType
    ):
        return None
    if node.op.border_mode not in ["full", "valid"]:
        return None
    if not node.op.filter_flip:
        # Not tested yet
        return None
    if node.op.num_groups > 1 or node.op.unshared:
        return None

    # Conv 3d implementation, needed when subsample > 2
    if node.op.border_mode == "valid" and node.op.subsample != (1, 1):
        # The op don't support that anymore.
        return False

    # Conv2d Implementation
    dx, dy = node.op.subsample
    if dx not in (1, 2) or dy not in (1, 2):
        # Not implemented in the gradient of ConvOp
        return None

    if node.op.imshp is None:
        op_imshp = (None, None, None, None)
    else:
        op_imshp = node.op.imshp

    if node.op.kshp is None:
        op_kshp = (None, None, None, None)
    else:
        op_kshp = node.op.kshp

    if None in op_imshp or None in op_kshp:
        if (dx, dy) != (1, 1):
            return None

    mode = "valid"
    if not node.op.border_mode == "full":
        mode = "full"
    filters = kern.dimshuffle((1, 0, 2, 3))
    filters = filters[:, :, ::-1, ::-1]

    outshp = get_conv_output_shape(
        op_imshp,
        op_kshp,
        node.op.border_mode,
        node.op.subsample,
        node.op.filter_dilation,
    )[2:]
    fulloutshp = get_conv_output_shape(op_imshp, op_kshp, node.op.border_mode, (1, 1))[
        2:
    ]

    nkern = op_imshp[1]
    imshp = (op_kshp[0], outshp[0], outshp[1])
    imshp_logical = (op_kshp[0], fulloutshp[0], fulloutshp[1])
    din = ConvOp(
        imshp,
        op_kshp[2:],
        nkern,
        op_imshp[0],
        1,
        1,
        output_mode=mode,
        unroll_batch=None,
        unroll_kern=None,
        unroll_patch=None,
        imshp_logical=imshp_logical,
        kshp_logical=None,
        version=-1,
        direction_hint="bprop inputs",
    )
    din = din(topgrad, filters)
    copy_stack_trace(node.outputs[0], din)
    din = aesara.tensor.patternbroadcast(din, node.outputs[0].broadcastable)
    copy_stack_trace(node.outputs[0], din)
    return [din]
示例#2
0
def exec_multilayer_conv_nnet_old(
    conv_mode,
    ss,
    bsize,
    imshp,
    kshps,
    nkerns,
    unroll_batch=0,
    unroll_kern=0,
    img=None,
    validate=True,
    conv_op_py=False,
    do_print=True,
    repeat=1,
    unroll_patch=False,
    unroll_patch_size=False,
    verbose=0,
):
    if img is None:
        img = tt.dmatrix()

    # build actual input images
    imgval = global_rng.rand(bsize, imshp[0], imshp[1], imshp[2])

    a = tt.dmatrix()
    kerns = [a for i in nkerns]
    inputs4 = dmatrix4()
    kerns4 = dmatrix4()

    # for each layer
    ntot = 0
    tctot = 0
    tpytot = 0

    for kshp, kern, nkern, n_layer in zip(kshps, kerns, nkerns,
                                          range(len(nkerns))):
        if do_print:
            print("************* layer %i ***************" % n_layer)
            print(conv_mode, ss, n_layer, kshp, nkern)

        # actual values
        w = global_rng.random_sample(N.r_[nkern, imshp[0], kshp])
        w_flip = flip(w, kshp).reshape(w.shape)

        # manual implementation
        # check first stage
        padimg = imgval
        if conv_mode == "full":
            padimg_shp = N.array(
                imshp[1:]) + 2 * (N.array(kshp) - N.array([1, 1]))
            padimg = N.zeros(N.r_[bsize, imshp[0], padimg_shp])
            padimg[:, :, kshp[0] - 1:-kshp[0] + 1,
                   kshp[1] - 1:-kshp[1] + 1] = imgval

        outshp = N.hstack(
            (nkern, ConvOp.getOutputShape(imshp[1:], kshp, ss, conv_mode)))

        time1 = time.time()
        outval = N.zeros(N.r_[bsize, outshp])
        if validate:
            # causes an atexit problem
            from scipy.signal.signaltools import _bvalfromboundary, _valfrommode
            from scipy.signal.sigtools import _convolve2d

            val = _valfrommode(conv_mode)
            bval = _bvalfromboundary("fill")
            for b in range(bsize):  # loop over batches
                for n in range(nkern):  # loop over filters
                    for i in range(imshp[0]):  # loop over input feature maps
                        outval[b, n,
                               ...] += _convolve2d(imgval[b, i, ...],
                                                   w_flip[n, i, ...], 1, val,
                                                   bval, 0)[0::ss[0], 0::ss[1]]
            ntot += time.time() - time1

        # ConvOp
        if unroll_patch and not unroll_patch_size:
            conv_op = ConvOp(
                dx=ss[0],
                dy=ss[1],
                output_mode=conv_mode,
                unroll_patch=unroll_patch,
                verbose=verbose,
            )(inputs4, kerns4)
        else:
            conv_op = ConvOp(
                imshp,
                kshp,
                nkern,
                bsize,
                ss[0],
                ss[1],
                conv_mode,
                unroll_batch=unroll_batch,
                unroll_kern=unroll_kern,
                unroll_patch=unroll_patch,
                verbose=verbose,
            )(inputs4, kerns4)
        # l1shp = N.hstack((nkern,
        #                ConvOp.getOutputShape(imshp[1:], kshp, ss, conv_mode)))
        propup2 = function([inputs4, kerns4], conv_op)
        propup3 = function([inputs4, kerns4], conv_op, mode=Mode(linker="py"))

        time1 = time.time()
        for i in range(repeat):
            hidval2_ = propup2(imgval, w_flip)
        hidval2 = hidval2_  # [:,:,0::ss[0],0::ss[1]]
        tctot += time.time() - time1

        if conv_op_py:
            time1 = time.time()
            for i in range(repeat):
                hidval3_ = propup3(imgval, w_flip)
            hidval3 = hidval3_  # [:,:,0::ss[0],0::ss[1]]
            tpytot += time.time() - time1
            assert (N.abs(hidval2 - hidval3) < 1e-5).all()
        else:
            tpytot += 0

        if validate:
            temp = N.abs(outval - hidval2)
            assert (temp < 1e-5).all()
        if validate and conv_op_py:
            temp = N.abs(outval - hidval3)
            assert (temp < 1e-5).all()

        imshp = tuple(outshp)
        imgval = outval.reshape(bsize, outshp[0], outshp[1], outshp[2])

    return tctot, tpytot, ntot
示例#3
0
文件: opt.py 项目: ricardoV94/aesara
def local_conv2d_gradweight_cpu(fgraph, node):
    if (
        not isinstance(node.op, AbstractConv2d_gradWeights)
        or node.inputs[0].dtype == "float16"
    ):
        return None

    img, topgrad, shape = node.inputs

    if not isinstance(img.type, TensorType) or not isinstance(topgrad.type, TensorType):
        return None
    if node.op.border_mode not in ["full", "valid"]:
        return None
    if not node.op.filter_flip:
        # Not tested yet
        return
    if node.op.num_groups > 1 or node.op.unshared:
        return None

    if node.op.border_mode == "valid" and (node.op.subsample != (1, 1)):
        return None

    dx, dy = node.op.subsample
    if dx not in (1, 2) or dy not in (1, 2):
        # Not implemented in the gradient of ConvOp
        return None

    if node.op.imshp is None:
        op_imshp = (None, None, None, None)
    else:
        op_imshp = node.op.imshp

    if node.op.kshp is None:
        op_kshp = (None, None, None, None)
    else:
        op_kshp = node.op.kshp

    if None in op_imshp or None in op_kshp:
        if (dx, dy) != (1, 1):
            # We cannot infer the shapes
            return None

    # Determine gradient on kernels
    assert len(op_imshp) == 4 and len(op_kshp) == 4

    outshp = get_conv_output_shape(
        op_imshp,
        op_kshp,
        node.op.border_mode,
        node.op.subsample,
        node.op.filter_dilation,
    )[2:]
    fulloutshp = get_conv_output_shape(op_imshp, op_kshp, node.op.border_mode, (1, 1))[
        2:
    ]

    newimg = img.dimshuffle((1, 0, 2, 3))
    newtopgrad = topgrad.dimshuffle((1, 0, 2, 3))

    if node.op.border_mode == "valid":
        (img, filters) = (newimg, newtopgrad)
        kshp_logical = fulloutshp
        kshp_logical_top_aligned = False
        imshp_logical = None
        (bsize, nkern) = (op_imshp[1], op_kshp[0])
        imshp = (op_imshp[0], op_imshp[2], op_imshp[3])
        kshp = outshp
    elif node.op.border_mode == "full":
        (img, filters) = (newtopgrad, newimg)
        kshp_logical = None
        kshp_logical_top_aligned = True
        imshp_logical = (op_imshp[0], fulloutshp[0], fulloutshp[1])
        (bsize, nkern) = (op_kshp[0], op_imshp[1])
        imshp = (op_imshp[0], outshp[0], outshp[1])
        kshp = op_imshp[2:]
    else:
        raise NotImplementedError("Only [full,valid] modes are currently supported.")

    # Flip the kernels
    filters = filters[:, :, ::-1, ::-1]

    dw = ConvOp(
        imshp,
        kshp,
        nkern,
        bsize,
        1,
        1,
        output_mode="valid",
        unroll_batch=None,
        unroll_kern=None,
        unroll_patch=None,
        imshp_logical=imshp_logical,
        kshp_logical=kshp_logical,
        kshp_logical_top_aligned=kshp_logical_top_aligned,
        direction_hint="bprop weights",
    )
    res = dw(img, filters)
    copy_stack_trace(node.outputs[0], res)

    if node.op.border_mode == "valid":
        res = res.dimshuffle((1, 0, 2, 3))
        res = res[:, :, ::-1, ::-1]

    res = aesara.tensor.patternbroadcast(res, node.outputs[0].broadcastable)

    copy_stack_trace(node.outputs[0], res)
    return [res]
示例#4
0
def exec_multilayer_conv_nnet(
    conv_mode,
    ss,
    bsize,
    imshp,
    kshps,
    nkerns,
    unroll_batch=0,
    unroll_kern=0,
    img=None,
    do_print=True,
    repeat=1,
    unroll_patch=False,
    unroll_patch_size=False,
    verbose=0,
):
    if img is None:
        img = tt.dmatrix()

    # build actual input images
    imgval = global_rng.rand(bsize, imshp[0], imshp[1], imshp[2])

    a = tt.dmatrix()
    kerns = [a for i in nkerns]
    inputs4 = dmatrix4()
    kerns4 = dmatrix4()

    # for each layer
    ntot = 0
    tctot = 0
    tpytot = 0

    for kshp, kern, nkern, n_layer in zip(kshps, kerns, nkerns,
                                          range(len(nkerns))):
        if do_print:
            print("************* layer %i ***************" % n_layer)
            print(conv_mode, ss, n_layer, kshp, nkern)

        # actual values
        w = global_rng.random_sample(N.r_[nkern, imshp[0], kshp])
        w_flip = flip(w, kshp).reshape(w.shape)

        outshp = N.hstack(
            (nkern, ConvOp.getOutputShape(imshp[1:], kshp, ss, conv_mode)))

        time1 = time.time()
        # outval = N.zeros(N.r_[bsize, outshp])

        # ConvOp
        if unroll_patch and not unroll_patch_size:
            conv_op = ConvOp(
                dx=ss[0],
                dy=ss[1],
                output_mode=conv_mode,
                unroll_patch=unroll_patch,
                verbose=verbose,
            )(inputs4, kerns4)
        else:
            conv_op = ConvOp(
                imshp,
                kshp,
                nkern,
                bsize,
                ss[0],
                ss[1],
                conv_mode,
                unroll_batch=unroll_batch,
                unroll_kern=unroll_kern,
                unroll_patch=unroll_patch,
                verbose=verbose,
            )(inputs4, kerns4)
        # l1shp = N.hstack((nkern,
        #                ConvOp.getOutputShape(imshp[1:], kshp, ss, conv_mode)))
        propup2 = function([inputs4, kerns4], conv_op)

        time1 = time.time()
        for i in range(repeat):
            propup2(imgval, w_flip)
        tctot += time.time() - time1

        imshp = tuple(outshp)
        # imgval = outval.reshape(bsize, outshp[0], outshp[1], outshp[2])

    return tctot, tpytot, ntot