def eval(): env = Tetris() max_steps = None epsilon_stop_episode = 1500 mem_size = 20000 discount = 0.95 batch_size = 512 epochs = 1 replay_start_size = 2000 n_neurons = [32, 32] render_delay = None activations = ['relu', 'relu', 'linear'] agent = DQNAgent(env.get_state_size(), n_neurons=n_neurons, activations=activations, epsilon=0, epsilon_stop_episode=epsilon_stop_episode, mem_size=mem_size, discount=discount, replay_start_size=replay_start_size, train=False) agent.load("ckpts/591_model.ckpt") current_state = env.reset() done = False steps = 0 # Game while not done and (not max_steps or steps < max_steps): next_states = env.get_next_states() best_state = agent.best_state(next_states.values()) best_action = None for action, state in next_states.items(): if state == best_state: best_action = action break reward, done = env.play(best_action[0], best_action[1], render=True, render_delay=render_delay) agent.add_to_memory(current_state, next_states[best_action], reward, done) current_state = next_states[best_action] steps += 1
def dqn(): env = Tetris() episodes = 2000 max_steps = None epsilon_stop_episode = 1500 mem_size = 20000 discount = 0.95 batch_size = 512 epochs = 1 render_every = 50 log_every = 50 replay_start_size = 2000 train_every = 1 n_neurons = [32, 32] render_delay = None activations = ['relu', 'relu', 'linear'] agent = DQNAgent(env.get_state_size(), n_neurons=n_neurons, activations=activations, epsilon_stop_episode=epsilon_stop_episode, mem_size=mem_size, discount=discount, replay_start_size=replay_start_size) log_dir = f'logs/tetris-nn={str(n_neurons)}-mem={mem_size}-bs={batch_size}-e={epochs}-{datetime.now().strftime("%Y%m%d-%H%M%S")}' log = CustomTensorBoard(log_dir=log_dir) scores = [] for episode in tqdm(range(episodes)): current_state = env.reset() done = False steps = 0 if render_every and episode % render_every == 0: render = True else: render = False # Game while not done and (not max_steps or steps < max_steps): next_states = env.get_next_states() best_state = agent.best_state(next_states.values()) best_action = None for action, state in next_states.items(): if state == best_state: best_action = action break reward, done = env.play(best_action[0], best_action[1], render=render, render_delay=render_delay) agent.add_to_memory(current_state, next_states[best_action], reward, done) current_state = next_states[best_action] steps += 1 scores.append(env.get_game_score()) # Train if episode % train_every == 0: agent.train(batch_size=batch_size, epochs=epochs) # Logs if log_every and episode and episode % log_every == 0: avg_score = mean(scores[-log_every:]) min_score = min(scores[-log_every:]) max_score = max(scores[-log_every:]) log.log(episode, avg_score=avg_score, min_score=min_score, max_score=max_score) # Save Weights agent.save(f'ckpts/{scores[-1]}_model.ckpt')